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ABSTRAC T

Collision integrals developed dudd partially evaluated by

L. W. Hunter and R. F. Snider, and utiliteU ,y Hunter in his

treatment of the effects of a mauneti2- fiel on the shear

viscosity and thermal conductivity cf sinnio component diatomic

gases, are cast in the Generalized Phase Shift (GPS) formalism

of C. F. Curtiss. This, along with tho introduction of certain

operators, allows the collision integrals to te considerably

simplified by facilitating the evaluation of several summations

and angle integrations.

The difficulties inherent in treatinq 'jiatori-diatoli

interactions lead to consideration of hinary gaseous mixtures

in which the dominant species is at,),ic, thte diatomic species

being restricted to low concentraticns. '-uj,-h systeris require

consideration of atom-atom and atao it: irtoractions only.

Employing methods introduced by HIr.ur, ;c,'ar equations are

obtained for the transport propertiL;4 t hiniry mixtures in

applied magnetic fields. The collision intr-',rals occurring in

*This research was supported by Na t. iori I i ,f, Found,1 ion

Grants CHE74-1/4t34 AO1 and CUE 77-Ll
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these equations are found to be generalizations of those

discussed by Hunter and Snider.

The shear viscosity of an atom-diatom mixture in an applied

magnetic field is then treated in detail. The basis set is

truncated and the diatomic species is restricted to low

concentrations. The expressions obtained for the shear

viscosity tensor are in qualitative agreement with experimental

observations. Steps leading to calculation of the shear

viscosity tensor in this particular case are discussed.
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I ODUCT i ON

I. The Senftleben-Beenakker Effect

Calculated values of the transport properties ot dilute

polyatomic gases that compare favorably with experni-entally

measured values can be obtained by treating the wol)ecules

as point particles, i.e., as structuroless particles

interacting via a spherical intermiTerular p!tential

Incorporating internal molecular structure ind angular

dependence of the interaction pecontiai complicates the

transport property calculations considerably, but makes

only small contributions to the calculated value. This

fact somewhat reduces the incentive for carrying nut such

calculations, and makes it difficult to assess the relative

merits of various treatments of the non-soherical cantribution.

The spherical treat:u;ent, hov.e',er, is incapahle of ac(un ing

for the effect of an anplied external fitld on the transport

properties of polyator';ic rolecule,. This effect, krcoi. as

the Senftleben-Beenakker efefet t,-e , who first Mherved

it experimentally for pa ra ad ,i, a d diiama gnetic molecules,

respectively, can aotually be measured "ore accurate!i than

the transoort properties themselves. It is extre;-ely

sensitive to the ani-itropic part of tie intermolecular potential

of molecule;- possexins internal structur,, and for this reason,

may provide a useful TTeans of probing nonspherical irteractions.
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There is a simple physical explanation of the effect.

Under the influence of a gradient in one or more of the

macroscopic variables of a syste i, the nx)lecules tend to change

their distribution so as to reduce tne magnitude of the gradient,

or gradients involved. The result is a flow within the system.

Since the molecules are nonspherical, the collision probabilities

are functions of the orientations, and consequently, the

molecules have a tendency to align. Tnls results in a value

for the transport property that is slightly larger tnan that

which would obtain in the absence of any aliqnnent.

Since both paramagnetic and diara.aqnetic molecules have

net maqnetic moments, in the presence o a magnetic field

they precess about the field direction. [xcept for those

components parallel to the field, this precession tends to

destroy the preferential alignments, or polarizations, resulting

from the presence of the gradients. A a ccnsequence, the

transport properties of molecules with net macntic noments

are reduced in the presence of an FXterc3l Mragnetic field.

The extent of the destruct. .r c cf toe polarizaticn is

directly related to the average nu; ber of precessions between

collisions. The precession frequency is proportional to the

magnetic field strength, HM , while the time between collisions

is inversely proportional to the pressure, p , for a dilute

M-
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gas . At constant tenruerature, the extent VJtie destruction

of polarization, and cons equentl v the Senftlt;hen-Feenakker effect,

is solely a function of HP /p At sufficiertly high field

strengths, polar-izaticn is cofpietelv aestrcyed, arid saturation

occurs.

In extending the above picture, it is apoarert that any

polyatomic gas will exhibit a similar effect ",nen rubjected to

an external field capable Of Causing the molecules to precess.

Other than the case of polar molecules in eleLtric fields,

however, the field strengths required to caUse a reasonable

degree of precession are so high as to miake prcictical

applications virtually impossible.
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2. Theory and Experiment - A Brief Hi,,tcry"')

The effect of a magnetic it Id -, th,? . ;r;uctivi ty

of gaseous 02 was first observid by . Senftleber in 1930.

Enqelhardt and Sack then observed the .enftlenen effect on

the viscosity of 02 in 1932. ihe tact !:,at 0 , c .s r :he

same manner as O coupled with tne fa t ,i t in - Ytures wi th

non-paramagnetic eases, the ef Ic t is ! o -ort ior. ii to the -ic le

fraction of the paramagnetic s.ecLts, lf.d eal!V Lts0,rvers to

the (erroneous) conclusion that the Senftleben efie. t is a

property of pari, ragnetic gases '_)nlv. )tner obse';,ativns

the first decade of sucn studies were tnit in ' r ureserc_

of a magnetic field, the transport coefficients of pararranetic

gases decrease by from 0.1 to 1.0T; that the effect is even

in the magnetic field; and that at conistant temperature, it is

a function of the field strength divided by the pressure.
8

The observations of the first decodr I", i C n. trter

to an early qualitative explanat.on cf ihe effect in 1938F.

His explanatior, based upon con-.ide- t cft:,. e; th-: C t of a

magnetic field on the mean free c air 'wlr..ule, was

treato: ore quantitatively in T93') b'e Ure nike and .an Lier.

These early devclcpmentS treated the roft jr1fi paraxna'qetic

molecule as a disc with a magnetic rx'.:et in the direction of

the axis of rotation. The cross section de:pends on The angle
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between the axis of rotation and the d-rection of motion. In

the absence of a magnetic field, the direction of the axis of

rotation is conserved between collision.. !r the premnce of

a field, however, the magnetic moment, and consequently the

axis of rotation, precesses about the direction of the field.

The collision cross section now chanoes periodically during

the flight of the molecule, necessitating an averaf!ing over

the precessions in the mean-free-path picture. This additional

averaging leads to the decrease in the transport properties.

The mean-free-path approach adequately accounts fcr the

phenomenon of saturation, the functionai dependence on HM/p ,

and the dependence on the ole fraction of pia!',;netic species

in a mixture.

Following the 1930's, during which the Senftleben effect on

paramagnetic gases was studied extensively, essentially no

studies of field effects 'cok place unt, Ine early 19,0'5.

!n
Then in 1961, Kagan and !'aksinov -f-rot, a variational

calculation of the Senftreoen effei ' ", on conductivity

of 02. Their treutment o the I c I tzm ann

equation utilizes an elastic co lll,'n n Idel and a truncated

expansion of the distriLution functhon in terms of irreducible

Cartesian tensors in the (reduced peculiar) velocity, W , and

the rotational angular momentum, j
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As early as 1939, Chapman and Cowling had realized that

in the presence of a perturbing qradlent, for exmpl,, (a T,

the nonequilibrium di,,Lribution rj'ict'n .,, .,r Len

Sf= 0 + ) with -A--,' , C)uld contain terms involving

J Since no physical reason ,4as seen to consiJer' polarization

of nonspnerical molecules in dilute gasc-; i l lt ci ,, they

disregarded the anisotropy of the distriLuti1,n fjc7in in .,

choosing instead to write A in the .Ionatmic f(r, ,'*W ).
12

In 1961, in a treatm'ent of diato-mics, ragan and Afanas'ev

noted correctly that A should include terms involving all

possible true vectors which can t,, constructt;d from W and .1

i.e., that A should be writter as A = A 4- A.WXJ iA 3(W.)_I

The Senftleben effect is then the result of the remction of the

anisotropy in j space due to the precession of the nK)lecules

in the presence of a magnetic field.
I.3

The following year, 1962, J. J. M. Beenakker measured the

change in the viscosity of N. and other diaitiagnetic gases in the

presence of a magnetic field, reinioving the restriction of these

field effects to paramagnetic molecule;. nalogous measurements

of the thermal conductivity were conducted by Gorelik and

Sinitsyn 14 shortly thereafter. This experimental work involving

field effects on diamagnetic gases has been followedJ by

considerably renewed interest in the Senftlehen-Re2nakker effect

5from both experimental and theoretical standpoin~ts. Extensive



experimental infornation is now available, as well as numerous

theoretical developients. Unfortunately, very few numerical

calculations of field effects on transport properties have been

attempted. This work is a step toward such calculations.



3. Scope

To date, most theoretical develnp w',nt,- o the transport

properties of polyatomic +aes in appjjfed fields utilize a

Chapman-Enskog procedure to solve the equaLions, for the

transport coefficients. Arqu,,cnts are, advanced to J,. tify the

truncations made, but moist ire not truly justified until the

solution has been ob a-,ed. 2 L '. -I ;ter h..; ne,; sed a

procedure to treat trunsoort properties tnat adloys tUe tensor

analysis to be coripleted bef)e any truncation is i,- essary.

Hunter's techniques are examined in "art I of thi. lJesis, and

the collision integral!, arising i) his treatmont. it- cast in

terms of the reduced scatterirg matrix or Curtis and

co-workers. These collision intearals are then c:lified

considerably by the introduction of certain operators and the

explicit evaluation of , nuil[eer of the sut- , and ,,2 e

integrals involved.

Hunter's treatme>nt O~fli n to a "in,:I-cor ;oneit diatonic

gas. Calculation of the r, -pmrt nro ,;,, ites ot sti, a system

is complicated by the dep,: rre of the, int, rctioi ptential on

the orientations of the rcllidrig diatomics, Recentlv, a

calculation of the transport properties of an ato"i-diatom mixture,

in which the diatom is present in low concentration, has been

completed by R. Wood. 16 Such a calculation requires

consideration of atom-atom and atom-diatom interactions

A
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exclusively. Since the Senftleben-Beenakker effect is observed in

mixtures, it seems reasonable that a detailed calculation of the

effect should first be attempted for an atom-diatom mixture

involving a diamagnetic diatomic species in low concentration, and

later generalized to a purely diatomic gas. In establishing the

groundwork essential to an atom-diatom calculation, Hunter's

development for a single component gas is first generalized to

binary gas mixtures. This is accoinplished in Part II.

Then in Part III, the equations derived in Part II for a

binary gas mixture are restricted to an atom-diatom mixture that

is predominantly atomic, and expressions for the shear viscosity

are developed in detail. The expressions obtained are shown to

be consistent with experimental results, and the collision

integrals involved are expressed in such fashion as to make

evident the extension of the calculations of R. Wood to the

present problem.

IS
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PART I

A SINJGLE COMPONENT DIATOMIC GAS
IN AN APPLIED 1MAGNETIC FIELD

1.1 Transport Coefficients

The linearized Waldmnann-Snider equation 23can be used to

obtain a set of tensor equations from which the transport

coefficients of a dilute gas can be determined. In most

applications, the number of polarizations of the gas is limited

to a finite set and the tensor analysis performed in a truncated

basis. L. W. Hunter has developed a technique Ifor carrying out

the tensor analysis with the complete set of polarizations, i.e.

before truncation of the basis. In Reference 1, Hunter demonstrates

this technique for, the linear Zeeman effects on the shear viscosity

and thermal conductivity of diamagnetic molecules. A sketch of

Hunter's derivation of the scalar transport equations is given in

this section. The analogous development for binary mixtures is

carried out in detail in Part 11.

In Hunter's work, the equations for the transport coefficients

involve collision integrals which are related to those discussed

and partially evaluated b., Chen, Mordal. and Snider 4 and by
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Hunter and Snider.' For convenience, expressions fior, Reference 1

will be referred to by their equation number (from the reference)

preceded by H, e.g. H-40. Similarly, those from Reference 4 will

be preceded by CMS, and those from Reference 5 by 11S.

To obtain the basic tensor equations for the transport

coefficients, the Wigner distribution function-d.nsiy operator,h

f , is expanded about the local equilibrium, f(O)

to)

The perturbation. , is written in terms of quantities linear

in gradients of the macroscopic variables. If only shear viscosity

and thermal conductivity are of interest,I

-AV In T - B:[wVv,( 2) , ((.2-2)

in which the bracket notation indicates a symmetric traceless

tensor, T is the temperature, and v0 the stream velocity.

When (1.1-2) is used in the formal expressions for the heat

flux, q, and shear pressure tensor, T, and comparison is made with

the phenomenological expressions for these quantities, H-S and

H-9 are obtained for the thermal conductivity and shear viscosity

tensors, respectively:

2 kB /2= ( '? ) n < < (k BT 12 H i n )w _ > I -3
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and
nd= nkBT <<[WJ](2)10>> (1.1-4)

In the above, k is the Boltzmann constant, m is the mass of a

B

gas molecule, W = (2mkT)-'/2 p is the reduced peculiar velocity,

Hin t is the internal Hamiltonian of a single molecule, and the

inner product is defined as in H-6:

<<dIb>> = n-l Tr dp f(O) t b , (.1-5)

in which - denotes the adjoint operator, and the trace is over

internal states.

Due to the independence of macroscopic gradients, the

linearized Waldmann-Snider equation becomes separate equations 6

for A and B

2kBT N/ - <H(nt2 + i V _ + I int int-] W ('.1-6)

'I 2 ~ k 6 T

and

(Al + i ) 2[W] (2 ) , (1.1-7)

in which <'-Hint> L <.-Hintl>> , d? is the linearized Waldmann-Snider

collision superoperator, and L is the Larmor precession

superoperator defined by H-13,
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L. LJz, ] .(1.1-8)

In the above, J is the component of internal .ingular momentum

operator along the field, and wL is the Larmor frequency:

gu,

L h HM (1.-)

where g is the rotational Lands g-factor, p N  the nuclear

magneton, and HM the magnetic field strength.

Using the tensor equations just obLaineu, afoi wiLrl '.he

auxiliary condition of H-14,

0 o, (1.1-10)

scalar equations are obtained for A and n by considering

two bases, the projection operator basis,
4 ,5

A LPS(W) g(q)(,) Pj(pj)- " (1.1-1i)

in which L Ps ,(W) is a p-th rank tensor-valued function of W

W(q)(_) is a q-th rank tensor operator dependent on the

internal angular momentum operator, J , of one molecule, P

is a projection operator onto the j-th energy level, and p. is

the Boltzmann weight of the j-th level; and the Wanq

Chang-Uhlenbeck basis,
4

KR
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Hit

psB L LPS M)[J] (q )_ R(q)-BT , (.I12

B

in which R(q ) is a normalized Wang Chang-Uhlenbeck polynomial

(q) t

and [j](q is a q-th rank syimonetric traceless tensor of i , e.g.(2)

[J](2) JJ - y3J'J , where U is the second rank unit tensor.

The matrix elements of R and L in these two bases are given

in H-24, H-25, H-40, and H-41:

<A (a) 1; A Ia') :i>>

pqsj pq s
(1.1-13)

n(gk F (2a+l)- (pqsjlp'q's'J')(a) a
8k BT aa,a a

<Aqs aft q' L' A LpC (aa') 6pqsj,p'q's'j' 6 ,1.114

.. )' ]i _]p q s t ' a
<<qst' jBp I~ t I I -I n(-[l -(2a+l)-Pqst a,''

((.1-15)

and

< (a )?L i (a ' :'( ;)<<B L pq s tI> >  - (aq
pqstpq pqst,p'q's't'

(I.1-16)

In the above, is the reduced mass of the collision pair, and

pqsa and P(a are sptierical con-ponents of the total
pqs,
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polarization bases of Apqsj and Bpqs t , respectively.

Expressions for t ( 0(aa') are given in Ref. 1.
pq

The spherical components of A and B are then expanded

over the total polarization basis, B pqst to obtain

A = (1 - Apqst (a)(n (1.1-17)
pqsta pqst,1]300 (a)m pqst

(the l-Spqst,1000 factor ensuring thit the auxilidry condition

expressed in equation (1.1-10) is satisfied) and

B m = X BPqst B(a)n (.1-18)
=pqta (a)m pqst (

where~P~stand qst a

where (a)m and Bp  are expansion coefficients given by

the following matrix equations:

-' 1 (p q s t J(a) pq'stB T p SqS So o"Jl l ot (a)mB( ) (2~ p'q's't' p'q's't'J (m

+ i~l 6~ L1)(aa )AP)st
pqst,0 O  a' pq

- cintT] /2 1 5 kB

d 3m a, pqst,100 1 J-jn- 'pqst,1019, (1.1-19)

and
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+2a I

16 a, n 8 Tj Z~) o q
p q s ' t a Bp .. .

pqst,p q s (p'q's't

Y 2 (1.1-20)
= 5 pqst,2000 a,2

in which cint is the internal heat capacity per moulecule. The

spherical components of A and n are then given by

n CintT [A1001 kB A1010] (1.1-21)

m -nk B1 3m M (1)m- [2cintJ (1)111

and

nkBT B(2)m (1.1-22)

The important point of Hunter's developnint of the transport

coefficientL is that the tensor analysis precedes any truncation

of the basis. Solutions to (1.1-19) and (1.1-20) require the

truncatoi of Ve basis and evaluation of the scalars,

(,p q s t )(a) The remainder of Part I is concerned with the
p'q's' t'

evaluation of these scalars. With the ultimate goal of obtaining

calculated values of these scalars, tiey are expressed in terms of

relative moiixntum collision integrals in section 1.2, which in

turn are written in terms of the reduced scattering matrix of

Curtiss arid co-workers 7 in sections 1.3 and 1.5 and simplified

by the introduction of various operators in sections 1.4 and 1.6.

~ ''-
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Finally, some interesting relations among the scalars, suggested

by similar relations found by Chen, Moraal, and Snider 4 for the

collision integrals in another representation, are developed in

section 1.7.

i
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1.2 Expansion of the st in Terms of the Relative

Momentum Coll iion Inteqrals
(a)

The (3 ol'l't'j provide a description of the collision

process in terms of initial and final romenta (psp's') of a single

molecule. In order to express these quantities in terms of

S(jaj'AISaSb) , the reduced scattering matrix, it is first necessary

to make the transition to a description of the collision process in

terms of initial and final relative nmenta (xn,'n') of the

collision pair. This is accomplished through the introduction of

the quantity 4  I k  , defined in CMS-B16 and resulting,nk'n' ;psp' s'

from the transformation to center of mass and relative coordinates.

This section is concerned with obtaining expressions for the

p q st (a) in terms of the [q3 nt and '" f'qnn tt

relative momentum collision integrals.

The scalars jipq s t ' (a) defined in H-40 and (1.1-15) arepq's't',J

relted to the scalars -.(pqsj aip'q's'Ja) defined in H-24 and

(1.1-13):

(p q s t (a 1 (qq p a) " ([]q), 1] (q ' 2

aj

, ,( a )a (ao(pqSia P'q's'ja)

(I.2-1)

in which o(K.,-) =

ca =(Ej /kBT) = (h2Ja(Ja+l))/(21akBT) is the dimensionless
Aa
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rotational energy of molecule a , and

(pi '1)2 -(p. ) !4(p ;)'/ = 'jaj;)Ql exp(-c. -E , Q being
3aia a a a "

the molecular partition function. The quantity

_D is introduced in Ref. 4.
a (a)

Using H-27 and HS-]9, the scalars u(pqsj lp'q's'j ) can
a'

be expressed in terms of the scalars a(pqsj a pcq-' ) hc

in turn can be expressed in terms of the cross sections,

Substitution of these expressions in (1.2-1) yields

=I~ oil~a+ (lk (k) (kq'q) 2 (jkp'p) V2(kppI Y-'{q. q' k}

Z/n' iii,

~~~~c(q~~q 1 ,]q' )0 , '1/
ja ja

x{R () (i: ibq~ni')(c )L 1 (')~'a(~iiqi'~~'

q. q kjis a 6-j symbol.8
p pp aj
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H-63 defines a new scalar which can be written

(p'qs t Jk

p' - /  c?(kz.')1 I/2 I(k)
aI) : 2 ink'n' ;psp's'

£n

Pa )/1([J](q)q[J](q) )1 2  , q, 1/2
a bJ a - - a _ 1 ) = P I I

i R~~q)(Ejaq R(q')( ~) lq, i

~ a ja

xo( .)~ii~~'n'i~ k +t (-1 )" c"'(Zniaiqjt'nn'j~i'q')k}

(1.2-3)

This can be rewritten as

Ps t = "L(k) kP'-/ ' kpp 2 )( Iksn.ps'I I
p qs t ;psp

V'n'

I q n t k (- ) Z

if two new collision integrals are defined:

1A
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Z q n (p.)12

jA

ja j -a

a j;

ana

q n t )() saascnnwb rte

Vq'n'tI~k i-i pi af j~p

(qI
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After lengthy substitutions, the 'I q n t k and

,,[P q n t relative nrntum collision integrals can beZ 'q n't' k

expressed in terms of the reduced scattering matrix, S(a~bISaSb),

and consequently, in terms of the generalized phase shift,

(j'ISaSb) , of Curtiss and co-workers. 7 Considerable algebraic

manipulation and the introduction of various operators allows the

Z q n t  oad f q n t)
expressions for a qInItIJk and a 'q'n't' k to be greatly

simplified. These substitutions and simplifications are carried

out in the next four sections.
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1.3 q n t in Terms of the Reduced Scattering Matrix

Equation (1.2-5) is an expression for u'I'q'n'I)kin

terms of the kinetic theory cross section, u'(ZnJaJqj n'J'jq' )k

for nonvibrating diatomic molecules. HS-43 gives an expression

for y'(ZnJaibqiZ'n'j '  in terms of the relative velocity

cross sections, al(Znlja b;kO1V'n')k and

o u nJA bLaMaL Mb;L'M'LbMb abj  k Substitution of this

expression in (1.2-5) yields

Z q n1 t k  = (kqq' (k)x(j )(pjaj )

a - Ja t a'' t a)

x ,i }[ao(QniaJbkO2 'n,) k + (-I)q~q a( nlJ~aJ 1;kO£,n,)k]l
a.

-I ( 1)q ,L (j b ) -L(J a)d j JbJ ,a1.1)1/2
aJb ' 2 R bCaRb

J JL (q(L ')(-l)LaMb La L k

q ,j a )k

LaLaL aaa -Ma M!a- 1a
aab Ja a a) [a aj'

x 2( niaibILaMaLbMb;L 'aM'aLbMb12'n'i'a j )k]} , (1.3-1)
A1b

j~.!
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q' q k i

in which Ja Ja La is a 9-j symbol. 8

La Ja La

The relative velocity cross sections are expressed in terms

of quantities FA(jaJ;LaMa'bMb;jajb) with the aid of HS-41 and

HS-42:

'"" njj'2 k[8Z'BT 1
T

2  E,( kZZ' )- 1/2 (- ) + ' - ) k c( .)
°1 [ab k l ' n )k u k

k 0 V0 f d y - n ( )Rn Z'(y )  () F (j 'j ';k0 OO Jajb)a

(1.3-2)

and

L2(Znj A bLaMaLbMb;LM'LM h2 r r / .i "1/2(W

f' dyy2 dg'(g')2 6(E) R n(y)Rn, (y,)

Ma-M' 0 M'-aJ gg 2J nZ'('

O M -M'-M. M'-M
( ' 0 0 0 IMa+Mb  a %- a

ab ab Ma a

F\ (jaj;LaMaLbMb;ab) F (jJLMal (1.3-3)

In the above, g' and g are the relative velocities of the

centers of mass of the colliding molecules before and after

collision, while y' and y are the dimensionless relative

velocities (momenta) before and after collision. The R n(y) are

normalized three-dimensional harmnic cscillator wavefunctions

introduced in CUS-74.
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The F, quantitir ..pearing in the relative velocity cross

sections are normalizeu ich that for a spherical interaction

potential, V = V 0

F X(jaj;LaMaLbMb;jaJb)spherical 5(LaMaLbObIoooo) 6(JaJbaJaJb)

< [1 - exp(2inl)] , (1.3-4)

n, being the spherical phase shift. Thus, the Fk are a type

of reduced transition matrix. In terms of S(J'JbAISaSb) , the
5a

reduced scattering matrix,

FX(jajb;L a"aLb" b;jajb) = (_I)Ja+Jb (i)Ma+Mb 4 (jajb) c(LaLb)

(8n2)-2 X (-i)v+ a L a) Fb j3  L b
VlP 0 V -V J 0 -'4

Sff dS dSb [1 - S(jjXlSaSb)]D La((SS) D L (1.3-5)
{i"a a La isa bSa) aeeeet

where [ j a I is a 3-j symbol and the DLa
0 \v -Vj '

of the rotation matrix.8

Insertion of equation (1.3-5) in equations (1.3-2) and (1.3-3)

leads to expressions for the relative velocity cross sections in

terms of the reduced scattering matrix:
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a ~h3J;k~ )k I 8k SB Tj x

-[O(ki' /2 (-i) ( )k+ja ot(j ak)ct(i)[ W ; 10 0

dy0a dv~OO

lig2 (XJ Y)% ~* Z' (Y) (')j

- S Ldk ) (Di k ~ S(.36
ad~- by 1(y) I~~ A aj(r2 2  ~

L2T -'T-v
ox n j jX a )a b 8 (L a M MO)(i aL;'~ ci(Ln) j. -kaa b b M a 8 T

k2 Z

0 .[( i) " ( ) - < a0

" 6zj,)(jaj la' ) ( Eoato cotne onb0')( foflwin page.)



+ L~k~()ifdy( 2 'Idg- go) 2 gg nZ n'

xA ko to' Z k~ 2 V
lla+Mb -"a-Mb aa a al~

Ma Oa 02(j' MM 0MM
(-0M cc Q2( ajb 2(Lb)c1(LaL;) ()v41V

0 0

.T2)-4 [j~ dS dSbdS~dS ~~~~ab Sjj\I~~

La Lb V * Lb (1.3-7)
\vM (Sa 0 M (Sb) DVMs (S") Di M(S bi

At tk*s stage it is useful to consider the term of

al tqntJ involving relative velocity cross sections as

they appear in equation (1.3-1):

f2(kqq')V (.)q' (q),1 k(q)
a j;

; a a

{a J k } G 1CZn hia'j ;k ~lZn') k

Fl T [nT ab

(Equation continued on next page.)
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3a~b a ~) ~ )d

- r(kqq' -2Q(k k- (i)q+q'-Q- ' (-I) a c,2(j,) ( , )(pja

k I 'J ' q  a ([j](q)aq[j](q))1a ( q [j]( ))a'/

0 0 0 Jq' ja k j q q q

x (c R q') a d - ny) in,
t j - )L Rn~y JZn (C pI yg nYa a

x - j)V a (8T2) -jfdSadS S(ii;jISaSb)D o(Sa) ,

(1.3-8)

since8,9 J'a q j'a{ = (1,)q -l(jq) 6(qlq') . The j' andnq ' J 1 a

summations appearing in the first term above can be carried out: 4

(P" ")([J](q)R([J](q))J R~)(J')Rt)(E. ') a 12(q) 6tt',

jajb Jajb J ta ,jt (I. 3-9)

allowing the right side oi equation (1.3-8) to be written as

8B2 1.2(A){[(Oqq) - / (0Q ) - /2 a(9q) c,(ZqtkljZ'q't'0)
YEM [Qi,)q -,;. Z

f dy Rn,( Rn'

- [ (kqq') - 1 4/ ,(k (i )'2 )J a

(Equation continued on following page.)
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(pja ([J]()[ ( Ja ( - ] ( )t' ](q))Ja

Sojlq ja kj

x (8u2)-2fdSadSb Sja,b SSb)Oko(S)]

(1.3-10)

The above expression involves a constant term and a term linear

in the reduced scatterinq matrix, a result of the fdct that the

o1 cross section is linear in the transtion matrix. 5

The 02 cross section, on the other hand, is bilinear in the

transition matrix,5 and consequently, this term is somewhat more

difficult to evaluate:

Q(kqq' )-y]2(i )q+q' (- q q  t- 1(Jb )O2(J a)ot(J) (Pj a JbjJ )112

a b

LLD] ))2 R )RI (E.
'a a

Ia a Ja a a
LMaML;a b ( ,ja Ma-% Ma

x 2(inJaibILa MaLbMb;LLaa bMbI 'n'jaib)k

(Equation continued on following page.)
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liS- Bi ',(kqq' ) (i~q q (-1)q -1

- i 8 t( q) /_(q, Y2b (q)a ( bq '

" (p ab UJa aJ j

( q a (j ) [k 9()) 0 1

a Ja

- f(k££) I (i) " +Z42 '  (kZ,)(_l)Ja a(ja) 6(JaJbhJaJb)

" dy -i_ (Y 6) d R ( ) (812)- 2 dSa dSb

vig n)r n' ' 0 0'jj

a aJa a } c2(La)[ i

La , J' 0' Ma  0 Ma

ja a I a

. ' a l a S(j(j A SSb)DL (Sa)

dy 2 -R~ ~ oR -(a) (O (&2 -- 2 afbd a

+ J J 0 L?(L')(-La a (-i )
L a a L'aJ a -Ma M

a a a

x S(Jab4ISaSb)DSa

M' o - a 0 -, *j
aI IJ j; L~ M av a

(Equation continued on following page.)

C...i
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+ 2(kWt ) - 1  (-i) + '  -CL ) 2(: ')

LaL'Lb AA 0 0
IS a b

MaM'aMb

Ma+M -+Ma-4_ M' a Ma-M a 0 , al

(-qMa-M L (JaJb)a(Lb)"(LaL)( - )La+Mb{q' q krL L; k12xj )a( b LaL) )ja a L a a
j 3 a M -?i 'a  M'-MaJ

S a a a" b b I a a a Jb Jb Lb
v " -' 0 ;1 -111 0 v' -v . -0'

f fdyy2 f dg (gI)2!( R(()R 2 (-yo)(812)4 df~ d dSdS

* a Lb  ,La',/,S, *,b ( ,*
S(j'jX;SaSb)S (ja X'ISaSe)Da ( Db(Sb)U, a a),b (Sb

a a b b

(1.3-11)

In the above expression,

k Z Z, q' q k 0(9q) 2 (j a) (qkq'O),
0 oJ j a  0 (1.3-12)

allowing the ia' Jb' j;, and j sums to be carried out in the

first term in brackets. The ' sum can be evaluated in the two

terms in the second set of brackets, 8 9 yielding ( 0) and

a.1.' !0)

ailig d aO n

......................................................-
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(q ' q k L a 0 k 11-1 2
j ;a a~ al a aX(;

[Ja~1 a(.3-1 3a)

ri q j
x 6(La!k) a

a q' j; k )

and

V a 0 a =(-I) -Ma 'a) ( ~~(ja)q " q L' 0 -M' kI

}j; j; v0  a, a~j a a (1.3-13b)

6(L'aIk) J' q j;
a ' j'a k

allowing the evaluation of the ja' ' LI M , L and M' sums
ab' a a a a

in the terms in the second set of br,.ckets. The right side of

equation (1.3-11) then becores

j[kT J 2 ( qq - /LC,( ) ]  a( q) ,(Lqtkljq't'O)

B ' L

d f Rn (y) R (y) . kqq - . (k

q, q q _ , , (k) o ' I aja j

M i -fq '  - ( - 1 ) J a : ( 'a ( ) ( P " ( k j ; j

aJbj 1 0 0 J Jq' ja

(D ] (q)-q[p ](q))2/-. _ - R[.A)] -Fq RA] (q';.)

- a -- , t

(Equation continued on following page.)
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Sdy R (-Y)~() R j J a 1)2dadb

fsJ' ,Ass )Dk )(S )+ (_,)q+q'+v s jh SS)D k (S(a abv a abab4;S v0

+ [P(kqq')/t c(kZ2'y"2 (i)q+q'--Z (_flq ~z'

x _2

jajb LaL '-b X(0 0 0 JMa+Mb % ~b a

ri %M 0 M' -M .1~ l a a Ca(b) LaL)
Sa-a a al

_1211 
) w.3, Y

3ajbjajb - aj

a a L ~M
aa a alJ

t j~QPV4 a t LbJa M M;- 3 f a

a jai d ' J

x ja a' L l ib L b ja ( 1.3- L4b

'..........................
vo4 

-1 1
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Considering these results,

Rq n t h2rh2 LI 2(A) ri(OqqV'/ £)2 1 ( Qq)

f tpg nZ nk

- (kqq')V 2 sQ(kW)zY (.-q+i cOtZ) Y
3 a b LaL'Lb XX v

Ma-MAja .)"A~~(1 Lb( v I

(-i (J) aI 3a t b) aI

a 4  ' a ~

a b o i m a+Mb M'-Mb M'-Ma{M -i'; M'-M J
Iq' q L L k i' (j rjb Lb

~ 
' Jaa a I! 

I
(j I~ iiJ M a a -V [o Ii -WIJ

to~L VI dyy 1-r9

X(8Tt2) JJ{JdSadSbdSdS S(J4j 'ISaSb) S(jaj A' ISaS )

DLa (S DLb (S DLA DLb (.-5

0Vm(a) 11~1( Di M 'a(S)* Wmb I
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Before proceeding to the reduction of this collision

integral, it is useful to integrate over the energy delta function

appearing in the term quadratic in S . When this is done,

2jaia) d b(pa-Jy3 d 2  dg' ( 9') ' (Ei YRn, ,(Y')

a 4- 7 In +

ci3 (j ___

3(a)u(j~a),a2'jb)(Pj,j;) vIj T(~}rn+l _

h - '

x dy[y 2 + (E . e b" - '- y )]zl 2 Y,' e-Y-

ja + Fb j :- 1b

x L /naa Z+b 'L': +/2(Y2 (1.3-16)

Equation (1.3-15) can now te written

4uk BT L (0(iZ/

- 2S(kqq') 1 6 (kZz') - /2 (-)q-q' +;''  '  (Z')
ijb La LL b  XX'

S (_i) a-M;L b(-) a (J )a ( ja a

(Equation continued on follc,ing page.)
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(P*i ~(q2 ([J](q')(.' [J]( '))2(pj ,a U)(JI]q' [_ q )a _-J

a a b [ 0 0] Ma+Mb -M a-b M M a

k £ £ jq' q k L P k(. 1

( a l a a a L -r' M'-MaJ -' aLa-a -a  J a L a aa

ji L ' ( i J L 7 -7 '/

ia a L b b Lb *(n+1)Fln'+l) .
0 ' -v'h0 " - ln + /2

) r (n ' +V+

(8T2)-4 ffdS dSbdSadSb SJajb jSaSb) $(Jajb ^  a b
j.j (S a b * j;41Ja~ b S (+I -j z LS;+n,

, D ( * D Lb *(S ) R R e L Z /2(y )

ab t a n

Sx [y 2  c' + - ja  z/2 L2+V2(y + 
.' + Es - C a -E. )

a a a b b L a

!i~ (S i~ iL (Sb)]
W {) v - *l)9 , -~ a '

(a.3-17)

an expression that provides a convenient starting point for the

general reduction to be accomplished in thle next section.
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1.4 Reduction of the 3' q n  Collision Integrals

In this section, equation (1.3-17) is reduced to a summation

over eight indices and an integration over six angles, in contrast

to its present form requiring a sixteen-fold summation and

twelve-fold angle integration. The reduction is made possible

by the introduction of certain operators, as well as the explicit

summation over several indices.

In Reference 10, it i h,-wn that

- J ] 2.J (-1 : rj [] 1 S ) = - - K.. K(a)
a (-i I -'L aa :BTa~ j

S(S T K)a
I _ W i0 d' L aDv (s a ( 1.4 - 1a )

K(a) being defined in that same reference. Repeated
I (a)*]

application of the operator, F a,-T- K- , to both

~a B
sides of (1.4-1a) yields

[ja i L La  K(a)*m
[E:j _ Ija m (-i) 1 a ' a I ]S--T K I

a ' . J -1 a a k

< ( ) ia J aL La
D- ,i a-'a(S ) , (1.4-1b)

m integer,

and as a consequence,

iI



39La')ib i Li]bsb
. . .]M (_ )V, ja J a I-al b 4J b j La (Sa) DLb (

1  a vIM b
J'a+'jt)j ja jb "ql , v, -.)j 0 S1D Sb )

_ l (a) K( b  m -:aK'j a 'a L Jb j L b
k T( 21a P t--JU-o , - o

D a (S) Db (Sb = integer . (1.4-Ic)a b

Remenbering that q (t ) is a ang Chano-Uhletbeck polynomial,
it is possible to w rite

(q  ))" ( i a ) La La
R (S )

a \, v ''a
(1.4-2a)

i ., La (q  a aa O -vj a

Moreover, since [.+ . , ] /2 and

Ln+/(i+L.+ ,  -.. -+ L can 1e expanded in power seriesn a "Jb da J)

involvinq inteqer powers of (: a b - a "ib
'3C 3a- 'ib

tI

... il -III . . .. '' -. .. ... .;... ....
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.Ja ~~ -t.. z/2 L + 2(Y $ Jb a b A (-)

j* a, L Lb L ~bb(
-ja a "jb b L b )

++x

1~ f L',112 - -y K2  (-i)

{t[y2 q L~ nB- kt

jaV La~i ib j b La ( Lb (1.4-2b)
a m ,, W 3j b(

in * (),a + (b )*1 finally,

Rt ib

I a Lb ba LbL

S(ji)v+p \a a VI D vM a a ; bSb)

LaC Lbb (9qn). - 0 M d a "Ib b

where the operatov- is defined as

ab'tnt Rti (1.4 ~ I BTU -2d)

~ - VTK)
nB
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Making use of the fact that K~d dud K rIT

heritian, 1

ff dSad'b S(j'j'b Sb) f dy e- L t(~

v i~+jJ fa j' L '' (b 4h 1bI )LU 1 t

V'M 0~ (r 1 a

')+I]ja j: 'alib 4~ L b
Vi " jdy f e+ +n ~2

fd Sad Sb [C * (,-qfl) S(ij'AIS S ] a (S D;b(abab a b DM a a KM b (b)

This allows equation (1.3-17) to be written

q n t 'I 11~T 7f -16<

-2s2(kqq) .('Y ( 1 q-' ~ z'
La~ LLb XXI vj

j~j MaM?

(-)M -I V+J** (-1) La+Mb (1 3( ja )i

(Equation continued on following page)
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V ,) , (q,)' /

ab-([J] [ 'a a a b

jb a a b

L 'a ~ k zfJa " Lq' j Ja J b "J b l b Lb
La M a  bb M'la-Ma 0 % -l LajO ,' - ',I ') u

Ma ~~ a ..

S (n+l "(n'+] _ 3 2i, I1
[- .2 .'+ +-l/2 r Jf d, e)Rtq'(j a)(

jfJ dSadSbdS'd'a [Cbab('qnt) S(ja Sb)]

La Lb L , * Lb
xs ( x' SaS ) D ;M (Sa) D;,Mb(Sb) Dr a ,Mb baa b 1 ('a) (SIb

(1.4-4)

Now, the Jb sui can be evaluated,069

=b ju L )fb ' (1.4-5)b b -u) I0 Lb '

and the 9-j symbol expanded, 8
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qI q kL
La L k a " a a L

j a Ja a a 
'a

[a Ja a -M 1 '

( V)(_l).+ja+jaNJI +;j "41 a +'a Iq a  a
K II llI '2  [ 0 ) I C) -- J i V ?

(q' F L' iJa q J a La')

L .a  q L: q ' L a  .k

m +(M, P~ M aJ -V i " -r'i r , +u J -i a-Ma ;

(1.4-6)

to yield

i,!



44

f n'2, 4k

-29(kqq' )/?K jkZV J~-0 )q-q f- . ~( .7 ( '' ,-.'+~

LL

a) (3p jadd

a ab - - a

> .'( A 0 2k 2. j. a ja)

0 C) I t~~a+ab r~a b M%-Mj -) . 2

-tj I ) P 1 . a)1 K> 1 ~2 K ' 2 * MaJ

x dy yZ+ e-~ Y, lh~)R(9 l )jf'ffdSad dS;(dS
jaJ

[C ab(Zqnt) S(ja4'lNSaSb) -S ~ b

(Equation continued on fol~owing pay,.)
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.cM(La )  V (Sa)La  (l' _] Ma " -Ma- , D a

a' a a

(qL q L LA
Y (-1) a ?fDs. a a

(L 11 -MI M M

(1.4-7)

Using Ref. 8, the sums over La and L' Can be carried out,
a

_ +2 (L ) D K I

\LP) a'- ' PM - D1) ia+Wa a

(I.4-8a)

dfl (1
andI

q I a L' K(
a a Sa )(-1) a c:(L',) " -M' Ma DV" D ('M'

" PIW -'" 'M -U 2 aM

a- a- a

(_li~q'' lA1ItlJ -iM~~

(I .4-8b)

followed by the sums over v, ' and M' After relabelling

a

indices,
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Z q n, t, '______ ( qq

k B

2P4(kqq' )'f -,,(kZZI) (q-q'+Z+I. n -(1) r n'+1)

-4

'j (b"2  a ) J't I)
ja b~.u.

-W2l 1P'1.j3a. 11'2I'+

wU 1P2 Il 1 2 ~ 11 U31

Lk

0x A' 0~( 3' ,
-- -. 3 1 2

" I nL13 It-2 it 1 P3j
(E'qtii ti on con t rued on foIIow inrg page.)
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xD Lb (S)H~j dS'dS' S*(jj'' IS'S') Dr.vf,(
x bq,_b a a -2' (ba

D ' ,, ( ( .4-9)

At this point it is convenient to introduce a compact

notation for the Ja summation.

1 .'2 ; ' -1 (1j] '.
Ja j

(1.4-10a)

Via q i ~ a ' j~
J a J a 'a a)a a ]

(0 '2 -W2J - ' 1 -12 VAkI)2' 0

as well as two operators defined on the S S and S' angle spaces,b

respectively, by the following eigenvalue relations:

L a 0SaD b (Sb) i -)-h 1l

La Lb
I ' M D S )D a DM (SSb

a 4- M a a ? D b i~l b)~ ~ b
A O- 1:i D-i (S,3 " - DL (aMaS

( 1f 41 ' ' La Lb
l a 4fb ' ak, DLa (Sa) L, (S') ( . -10b)

!-tMa-Mb MtJ. M

and
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L(a')
a aa

Ea(q'Ja; wj)DvM.(S ' ) - (-1)
a

q' ja a D L ''S'a

' j I' a

(-~ I I -'a, D ,?M.a (S a) ( . -I

i -i - 'V ajhere 'fqanda L(a'

where 13  and L(a) are both defined in Ref. 10. Now

Eab(XA'Z' ; 13"- )[D' q(S )D Lb"bX ';1 P -Pl II2I ' '( S a -1202" a  ,- +O I"- : ' ( S b ) ]

S(-1)IJE "D ,,(S )Dq (Sa

-W +112 I-P 1 03 it W2 , iW 1  a 2 1 a

Lb 
((Sb) (1+ "4111 ")

If the 3-j symbols on the RHS of equations (1.4-lOb) and (1.4-10c)

are expanded,8'9 they, along with the phases, become polynomials

in (Ma+Mb) and v', respectively. Similarly, the operators Eab

and Ea, can be expanded as polynomials in k13 and L(a ') . It

should be noted that K and -k13 commute, while K and L(a')
3

do not. Thus K commutes with Eab( ' ';W3"-11") but not with

Ea ,(q ja;p ).

i . .a
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Once the value of q has been specified, the I(qi 2;J1112'

sums can be evaluated using recursion relations among the 3-j

coefficients. Values for I(ql 2 ;tA j',P1.2') are given in

Appendix I.A for q= 0,1 , and 2. These are sufficient to evaluate

transport properties in an applied field.
1

Introducing the above and making use of the fact that A1 3
an (a ')

and La) , and consequently Eab("'';03"-P2") and

Ea (q'ja;ji') , are hermitian, 10 it is possible to write

'q'n't' k 4T2 [Y> c2(X)P(Oqq)-1/2((OU)-/2 ct(iq)

x 6( qtkjk'q't'O) J dy -y Rn(y) R 1
I2iq' Z+' clek r(n+l) r(n'+ 1

_ 2 ,(kqq,)-(')- iqq++' - + ]

4 (8'-  K (A)')(LbK) (i'a(p )[](q' )G'(q' )12

lb,-

k I k q q'

0 1 "? "3 3 3 - 113 i " u " - 3

(Equation continued on following page.)
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I(qlP2;KJa 'iJ )Rt L(~~)  ,"y e(

a j
x dSadSb[Ea ( ;ia : ")La (qn t)-(ja~ . ,i)] ,( a

q  Lb
-it D 5 ,,Ju

In order to proceed beyond the above expression, it is useful

to introduce another operator, I a (qt'2) , defined by the relation

-11

(1.4-13a)

dI adtb, [Ea' dqSa " 'D ' I ( ") (S )*' ' "

-al a a

where f(S') is an arbitrary function in the S a ngJle space.a a

As a consequence of (1.4-1 3d),

)P IPJ2' I DqiJ' I .. .(S)D 1 ,(S )

rJ

a, dS' D' U(S )1.(qi2) f(Sa =) d8%)-  -( (qVi2)DJ ~ a a a J a

(1.4 -13b)
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taking the adjoint of I a (qW2) . The above expression can be
a

used to determine Ia , (qlP2) for a given I(qP2 ;cjj a 1 2) . The

lIa(qW2) corresponding to the q = 0,1, and 2 values of

I ,.ja11112') are also given in Appendix I.A.

The Ia,(qI12) operators isolate all the explicit dependence

on the indices K and 1, appearing in the I(ql' 2  all2'

in the rotation ratrix elements, D_l (S) , instead.

Equation (1.4-12) can now be written as

2,q'n t k  4uk BT [ 2(Q(Oqq)-2 ,(OV )ot(zq)

6( .qtkjP.'q't'o) dy y Rn (y) Rn,( )

-- ] - -'R+'F Fnl (n+ I

- 2 2( k q q ' ) > S'-P ( k z ' ) '() " Z 1 2 ( y Z 'In4 . )I( n + l /2

-4( ( ] 'q' [j]q' ))A
> (8: )-4 " >.' ( a) (pjaj _3a

J'a-J

j iI a JJ-_

310 02 k

liiiU0 0 0 ( "

Rt - fdy y4'e- L'n/"(y
Xn

q3 -ni2 eo2  P 3 olowng e

(Equation continued on following page.)
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fffdSadSbdSadSj[ b("k112 '; qn-)S.")a(XJS S

Ki-l2i2 a l3a b &()absDb(s)*J]} a (b4-4

The summations over rC, ul and l-J" yield UR.'2 ) '(Sa-S a)

q~ a1

while those over Lb, qpb and u yield (81 -3)6(Sb-S ) S It is now

possible to do the integrations over the six primed angles.

After a convenient relabelling of indices,

ol 'Zq'n't'k 4VjkBT [ ( )1O q - f(t ) IP (q

x 6(kqtkj'q't'O) f dy y Rnz( ) n'n,-(()]

'~ F n_+l) [(n'+l) .]2

2 (kqq')- -Q(kz')-/2 (i)qq' " n1 )- - n ,

(8ir2)
- 2 Z fI ;o.x ') ( )( ) ([J](q )Dq'[] q'))- a

0 0 B+W -6-r; - -V'[3g

(Equation continued on following page.)

.- I.
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Rt j; ~) *f dy <~e' n~I IsI a) fr ~dbS j S Sb)

qI q
xD Sa[ a )a D~ (SaL t)( "'"- ab(9qt

Further simpl if ication )f the above expre,,s i n is difficult

without restriction of one o, iixre of the indice,,,
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I 5 " I£ q nt

1.5 Z ' qn,!k in Terms of the Reduced SCdttering Matrix

Equation (1.2-6) is ji, expressiun (or 3"' it i

terms of the kinetic theory cross section, o" HJ q,' ni aq )k

for nonvibratiny diatomic molecules. HS-44 i; a- c/,pression for

'"( n.iajbq ,: n (1, k in terms of the relaLive (:iocity crnss

sections, ,, (;la b qq''.'n')k and

" a bj LM bl;" MaL ' ' n.. ' .)e. , vnich ,,! tf ,e ire

expressed in te ins of quanti ties, F , using HS-l i and hS-4?:

(l 9n (n I J ;qq ''n' .k r k)

[k

,(o 0 jJ q nZ

q? q' kl
~ 2(q'k~F.(ji q 1q' -M;. ; (I.5-1)

S-M ) 1h a a

and

h1 '-n r -

IL 1 r , '1

a) b a lb" L 0 0 M -'  - . .. .. (1

(Cor t jonri' n l owi no ,

' " 1 ,\' ,I.
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kF (j'j' ;LML~;ab
~Ma+M~M~Ma a bx b aaa

M, -N 0 M

aa bM b- a -

yielding

a b,

160 j 1 j; (' 0dk T 0(d~' Rn2(kq' n'?

CX2")' k't~+,'

VI m -M
aa a(j+ Mq' M8~ab

(-i)- U F~ i i;q r4 qI -M Jib}

1) ' k ~ Lx~qq 8 a M b i) a-m" mib in(') O

MJ 10 0 L M+ib 1M b MbM6 0(ab 2("L)- q,

(Luto cotne on folwM page.



f d-yy 2 f dg(g)9- ± ~

The F, quanti ties are expressed in ternT; of the (

scatteri nq matri x us i ri~j ( 1. 3-5) Tbs ~I1w 5)t~

rewri tten upon exp1i c it e va I dt ion o f ce r toin tv,

a~~~- P-/jq2''jj,'--

a b )k 9 k T

- oaibJb)) j h(~t W

t; i 'a q ~ q

{0J -P r(\ a a

d{ ddbSjUS r' l jf qM
ai b b)OI

+ (-)q-q' +:+~ (~~:S~~* . '

(Equat ion cnnt iruied on f o,, i ri p'lit,)

- - .~.dl
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(8k T I

il 4 j64k q+n'+k+Z2

r j - , j j ) ( x ) ' F A

na 0 o Ojl 1+mb 0 -Ma~b

Li)v l! %.lbb aa ( Mb M a -

a~o ba a

x k (8 - v' 2 j 'd S d S b H j ( ~ S~ ) D q (S )Dq~ ( b

LmaMMb J -M a-M bI 1~~a"ab a a P Sb

'-JD + d b \) (S

(j h' S

I + Jj 4

a- ja a tj )(~q

T- M +Mji"a-Mb ( , Lb+Lt

a b d
db

~ bjq L ' a)L Lb q'

(Fqua t i on cont inued on foll1owi ng page.)
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Ma'+M-M -M. ' -,M<M-M 0

k q

-M ', -M.' M +M.' M l ,,. , , M-1

tMbM% a a d 3,

tM+M M+'M -M M 4PA -MM .-

a+b a b a a'Mb- . -bb

j ~; Lai i L, j.j V I

a l3 b jaIb a -D a f)

S -Vj . -.:j ,'-

X (81q2) - 4  d,'.  dg (g - - r n ) ' '

f I

dSadSbdS'dS b  S(j~j,.'S,h.) : < '

La Lb a L
L a Lob

DVM (Sa Dr (S) v M,(S)

The sum over k' qives ') ((M 1l ) whiC 9
J,

b
the terms in (1.5-4) that ar- linear -in S to vani.r . ,r ti,.l

of the remaining .rms of (i.5-.1) in ''.2-6) yi,1 - us '

expression for 3 qnt " in crv", of the reiucp,i
Sq'n' Lk

scattering matrix;

a" q In t, _. ) j , '

q '" 7 
k,

n> I j j

-[]q )'9 []q - t)Ja t
t

.( : ) R~' '  ~ '

*~ , R,

£qu,;';j ,en ij , oil f:)] Trw,, [3, . ),
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- (kqq' k (ki)?)q-q~t 1 K

j CLj ( j ,,

a j;

L LM 11

abaab

Lbq' q k q L; Lj

M~MdbM M .-M'-M. -M
(.-M , Mb aA C ;+ -."' Mb 'a"-a a a a l

x 
M

0O 0 Uj IM'a~ +M 1-~'M~
a b b a L

x k va

a HaM 0 M'+ (I

ib j 'a j' L' i b j' LI g

x R W R ).-4, dSd' C d

nP~Y)~l [J{J' dad bdb S(j~j XlSaSb)

-T

L -- Lb -.b -



As in (1.3-16), tilt inteqrdtl' v e avr te I d r I , elta ~f uc t o n

can be done. Switching the indicps, Jandj

q,~- nt,(

-2Q(kqq')' :k Z') -- q- q

a b

L' (a alb a M' b ,, lp a

L'L'M'M W

fb L (~q L L 'I L.

x ~ ~ ~ ~ ' OL'bL)fj

~mbM, M'- M - -I ~ * -M!~ a3 ' F

2' +M h 'A
a' bMM aT,~M Ma 'M- MbJ Lrl4b aMt b

(Eq it ion c antLri -,n t W W

Cw
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j L
[I ' ' L -,"

J 'a J(b h h K a(TK,) in 7i

S(82) - 4  dy ed ' y e*( , . . , '

"S(.jj~xlS~ S (jJA ;s)" Q
, U. ,a -t * ,, 3- a

S a a b) S " ; ' 'S " " f ' ' O a

x [y2 + CJ. +Lj - Cj. /2 . a b

' ~ b J L - .

%+p (" , La fib LLb "
I ui i.M.

Up 0 v~ - %) -

[.5-6)

K qn t.

Further simplification of " q In't'Ik require., the

introduc:ion of operators, aniloqgtIs tc thoc, ir*:cduced in

section 1.4. This reductirn nf the r, nOl'isin"
' ' n '1 .

integrals is accomnplished n the next sec,,

i
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1.6 Reduction of the ,q 11 io. Trntegrals

In this section, equation ( . , ,un:ed frori a s u rimr i n

over nineteen indices arid an inte': . ,.,r tweive angles to an

eight-fold surmation and a six-tolt ,::1. in-i,-,:racion. The

reduction closely parallels that cf in section 1.4,

and therefore will be discusse i.. I , letail thcn that

of ~f~q n t'of ('3 , , k
(Z q n't'Jk

It is shown in sectior 1.4 Lh.

dSadS dS'dSY S(jaj' < -(Sa) DSb S

JJ)f b a Th a) U "I' I (a 1 (
J ab

)['Ry! + c., . - .. / 2x )( j  a '-b a Ub

xL ¥(y2 + . + c., -

n + b a
ji' L DM b)

" (- )'V+l ja ja 'a' J [,-. i a  Lb

L) , ( )  D (Sb
tO v -vJ i , -,.. " a b

dSdSbdSad b aSh" ", ) D (V a

jj'-b' ) La M Lb

Cb(Zqnt)  D J b )D (Sba-( L )cM[ (Se b )
i 0 La L

(l.6-1a)



a

I j I n) I l~ K,1
Once the atwve i , uil ;t

eval uated:

I L

16-)

Miaking u'e of tle relcti

fq J: Laj

L j a ja-! .0

and re a be1 I1 ir i. i nd i cv,
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x 6(Zqq'k'COUO)R''

2Q k q'q'

-j ~ 'a* L 'a j q k

a

P- -a ' 11i m~i

(L qti, iiL 1 mi ri ft ( or to1owi a e
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Ln (-y2) dS dS dSadS a (. qnt).s(j I Sb)]
n fiff a b a ab ~~')

La (S Lb  (Sb L S *D L b' ,a

DiMa a )D ,VMa b) b Sa ( a D ,,_v, .(S- b )

(1.6-4)

At this point it is again convenient to introduce the

E ab(AA '';v-v') and Eb,(q'ji;r-,') operators of section 1.4.

Now, the La and LL summations can be carried out as in (1.4-8a)

and (I.4-8b). Making use of the fact that these operators are

hermitian and relabelling indices allows (1.,6-4) to be written

°",(2, q n t h -f2 a 7T 12Ja

'q'n't' k 4Jk B T a x  (PN(>) b *,B'(O9) -Z) - L

( ) ' (0)( . :(, R
6(z.qq' kjV'OO )R O)( - )Rt,  j d-y R n ' Z( Y

'12
)q+q' 4. n+ ' +- l r(n'+l ) I

L
S(8uT')-4 .3J )  ( ([ji)[_]q [j]()

' qa (q) 1/2

jaL' Lb

aa b)x ([']q- )~ ]q-" )) (-1) j  2(>,X') cz2 (L'aLb)

x (-i)c'm' I+'v' ()Mb A k V.]
oc'BM'aMb [0 0 0 0J +v' -v-v'

(Equation continued on following page.)

• ... ... . . ...... .. ... ..
- W . Ff' : -

.i. .. . . ... . ,. .. , . I1 i, ;. . . ... . l ,
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q Ja j; fiad ~iab [ J; '1' *

S(JJ~IS ~ + dS (Sa) S~ (Eb

LI Lb

Next, the sumn over j a is treated:

a3 j - a 0 j ' U c '

(-1)JLa I(qji;L' ja t, -& ,( -

making the introdUCtion of the- Iai (q;:) operator-, ')i st. infi

possible. This allows the suins over L', el' t, L M n d

to be evaluated:
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L' Lb )* Lb
2(k'Lb)(-)+M a(S )D (Sb) D a(S '  D__ (S )aLil a a b r4 DM(- P, (
L;''a b aba a

LbMb'

aC (La a) D jD .  bt2(L)[) (Sb )

aa C a L b M b b ~~J

(8W2)2 S(Sa-Sa) (Sb-S ) O

The integrations over the angles S' and S (:an now be per-orned,

a

yielding ;

3,f-
' n ti 0,)

2&'k q &2_
2 ;(kqq')- /2- £(k ' "-V (i)q+q +Z+i (cj')) -(n+1 ri'±1

L .

A E ( k 'k q q'I (d ( ,o ,j ( , )

x iIT ±~+)}I

0 0 0 j(O V+ ,' -\-,, -v-v' V V,') b

(q+l 2

(Equation continued on following page.)

NONE"



6P

a-Ib a 

A final relabelling of indices produces an exr'ress ion for

0 ,[y'q'ntJk that is closely analogous to that of 3'zqnt

Ik k B T, j~b

t ( b0)
x 1/q~jz00R %, C- )Rtl (C kn+1iR0 Y)RnZ(

2.Q(kqq') 12 2~Q9'-/ (i)q4ql+9, cdiL. £(ij

ab ct

x J A3 b' a1 k. ka1 #

0 0bxm;$)b2ln)~i~I~)] (1.6-9)

.q' [j](q
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As with equation (1.4-15), further simplification of (1.6-9) is

difficult without restriction of one or more of the indices.

k qntI
Explicit evaluation of special cases of the o' 'q'n't'jk and

o ,fL'qn'tt yield interesting relationships among the

o l.P'q''jI)t Some of these are examined in the next

section.

K

Sl
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!q s t (a)

1.7 Relations Among the 
c p'q's't'j

Chen, Moraal, and Snider 4 have exdmined the p q s t.
Ip'q' s' t'Jk

collision integrals in the special case in which one of the B K
basis operators is purely translational, i.e., q' = t' = 0

These exhibit interesting relations due to the nature of the
0'(-n i j~ ' a A 1i1X1nj V '.' "' )k cross

(Qa bqI j'tb )k anJ b:. (;na b i I ba

sections. The j p q si thIa)" exhibit s imilar reldtions because
.p'O s'Oj

the °'X q n' n° k and t] n  co'lision integrals are

12
themselves closely related to the cross sections. In this

section, the a' q'nt and a qnt collision

integrals are examined in the q' = t' = 0 special case and

relations among the (T q s t (a)p scalars analo(4ous to those

of Chen, Moraal, and Snider are obtained.

If the restriction is made that q' = t' = 0 , equation

(1.6-9) can be simplified using the following:

-1

Eb(Ojt;O) = ,( j , (1.7-I)

D , ,(Sb) = 4(.' 'IO0) , (I.7-2a)

k q 0 (-1) q .  - (q) 6(qlk) , (1.7-2b)

S0)
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Q 1(0)(0) [1(0) (.7 a

R (0) (i) 1,(1. 7-3b)
0 b

and

S (p....)R~0) (c3 )R 0 (.)(F = (ti0) . (1.7-3c)
ia~ 3a a 0

Thus (1.6-9) becomes

k1[ q nt).ikXQ 8Tk-y a~ 6(kqt.kIZmO00)

~'(dy-y I~R ) R * t( Y)

n n

cx--

2 ,qO Si~q i (q) t(9j} 6 ( .7-

A~ L(!~ simla 11,+tm l) 1feuto (1.415 yild the imora
+result:+ L
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Equation (1.7-5) can now be useJ to obtiAin an oxprC'.A11O!,)r~

te 4p q s t(a) collision integrals. For W' t 0

equation (1.2-7) can be written

LP q s tya) -(_..)q+a+Pp' 
lq) (c (q)it) )

pO 0 0 A

[I+ (-1) C ~~npp I 0 176

In detail this becomes

(pq~ (a) (...1 2~ 1() 4pl +

S t (a) 6('a

2[(inil 1 I' 2Y-2

x a2bdb t

ja.4 (.7a A

R,+j 2 d dS 0 4 111.
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a result that is useful in considering some special cases r:I the

collision intvyrals.

1 (q)q)

~n~';00p i2 izn,00 Wn' ,p's'

1 2s '+q Z( rn'' qs') 6(p'1q) . (4a)

y ielding

d'
0 q 0 tI (a) + (I'')5p )2'oq[ - i1 1_7

[p 0 '1 7-9

YC q0 s' OJq

In comparison, for p I 1. s =0 ,it is found tr-,,j

( ~ 1 242s+q (nn Oqs)G(' l

iL Lc2s'+q L 4(ZnV n' COq('(' - I) (p' q - I

__zqs' (n,0 q (1.7-10d)
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and

[ 1 0 'O = S(p' a)IqOq)[1 + (-1 t(a)+q

( +) (2q 2sI+_ 2, 0i 0 t)
' q+1 2q+3 0 S'Ojq

L _

2, fo q 07 t)
+ 6(p, q -1)J- 1  31 0 Si -. ; 0)b

since parity considerations demand that + , be even. 4

Solving the above expressions for j40 q 0 t' .
q 0 s'0 i

,[ q 0 t))-1 1 2s+q 0O q 0 tY

0 0 0 P(qOq) [I + (-1)q] (72) qc 0

q

(l.7-1a)

= ,(qOq) -  [1 + ( 1 )q]-  (,-)2s'+q

T 7- 1b
fI 2qt} i': ( I q 0 ," ' ,

[× 2 +i)2q+2s'7-3 ' q+l 0 s'

= :(qOq) - 1  [1 + (-1 )q]-1 ( s)

{ _2 t I I. 7--1 1 ),q 0 q-i

t'

-

1

q q10S+
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It follows that

__ 2 ]* } .. ..-]I q 0. t]0 q 0 t! q1 <1 0 Oq 0 0 "

2 _I q -0 tI J '
2([q+1}2q''3 (q 1 0s q[ 'n

-2, ,-;1 q-l 0 s'+l DI .7-12)

analogous to CMIS-43.

Other ir.t:,restinj relations are obtained by .'

the case q = q' t' 0 . Equation (1.7-6) become-,

p' 00 S t  ( ) )a~p -

. =' 0 ) ( -I ) a .." p ' ' a ~ c i - a), . , ') . (.1 ( -1 ) '

'n'
(0i~ ) 0 [ n tl ,j13
n 'fl ;!p s ' 0 n ' 0)(1.71Oj3)

Exai-iiration cf (0) reveals that
n'n ' n' , ' "

1. ('n';psp'. n n s,_

n! n' 7 + '/" + -1]

P

L is-n s n+ , 0 0
2 j~

(1.7-14)

which leads t,

La
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O s a) 6(p 'p) (p a) U (d) - 0 A

1 + (1) I ] V2  ( 2)S + +p'! 2 -)1 - /

( 2 L + 1) _ _ _ _ (p L 2l+0 n

(1. 7-15)

with

'I[ ' 0 n l t ~ f II7F ( Z ) ? i

2(8jr2)l _L n(AAT)(-2.2 1J

x y tlab ei-y2 Cab ( 2 ) f d'J -,iS S (j j- I's7-1S
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Equation (1.7-15) can now be rewritten

[0 s .t 1 ) = (pp)pi(/)S+S+[ +PEI !,(pfS+-y-)!Y(p+SI+3/2 1

x:(''1 (-1 ]:(3+n+3p-'(9,+n- s+ Y]

£.nL

(12(l Lj

s -_+-01

s 2

2 rt c2(X)6(tlO) d- 2z-* e-Y L k/2( )L '+-2(y2)]
4ok T f ~ n n-s

(~>fLjfdSadSb S (~~ b

F * O C* n)S

Fab(*) Cab(cn) a4&'-'SabJ .(.-7

Defining two new quantities,

42 (L) L)- 'i~
G(ps~ikn) 't 2{-- L!Vsn 3+-+I1.-8

and
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-2 kBT

C2(A)6(tlO) f dy y2z+l e-y2 LZ+V2( 2) Lz+It, /Y2)

F XC92(X,
')  dy yZ+l e - 1/j'j' 0P 0al 0 -

ab

-• zXL(jj) I i sbbI ibi;lj 'ssb '
(89l)2 dSadS S(jjb)E(,O)Cb(t)S(jaJb.

(1.7-19)

allows (1.7-17) to be written in the simple form:

[P' 0 s. : ( (p , P)6(p a)(112)+s'+P[s!s' !s'(P+S+2)r(P +S'+ 2

x I G(ps;kn) a[Zn;st] (1.7-20)

Zn

The usefulness of the above expression is apparent in the

treatment of the following example. The scalar, 3('°10) (1)

can be written

1010 (1) '/I0(1 P1C7r( 2) Y; G(ll;z n) a[ n;O0] ,(I.7-21a)

with

G(ll;Zn) = (n 100) 2 5__n2O)_ (I.7-21b)F (5. r!: ry)•

IIZn
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Then, since o[00;00] : 0

o(I010() o o[01;00] + o a[20;00] . (I.7-21c)°(I°Ioj16

Similar treatment of o(2oo) (2) and Co(o0)(0) yields

0o200)2 3n :o1) yed

00)  101?0;00] (1.7-22)

and

o(OOiO(0) _ 83o[OlOO] (1.7-23)

from which it is apparent that

6, O" i, ) + S (0) 6 (1.7-24)

This is inalogous to C.'S-47.

Other special cases could be examined to obtain other relations

among the st collision integrals. The examples

treated in this section are reptesentative of the types of

manipulations that can be done once certain of the indices of the

collision integrals are restricted in sore fashion. The relations

that can be fou:,! make it possible to evaluate collision integrals

based upon information obtained in the detailed treatment of other

collision integrals, at d great savings in time and effort.

Furthermore, though the relations of this section apply to
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single component diatomic collision partners, the results for the
[Zqn, t] and o"'q n, t collision integrals may be
Z '0 n' 0k a 0 nOjk

generalized to other collision pairs. This be-,oes important in

the later portions of this thesis.
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1.8 Summary

In surmnary, the first section of this part, essentially a

review of Hunter's work, provi1ds the 1110tivation for the

reduction of the 0' ,qnt, and c ' [ q n~t, re la t ive

momentum collision integrals of the remainider of Pa rt I . I n

section 1.2, the relationship between the relative, nomentum

collision integrals and the kinetic theory cross -.ections,

a'(Zj bq njand co(2ni qj;'n'ij'q' ~ o

Hunter and Snider is established. In that section, the

[p~qs~t,(a)sciars, introduced in section 1.1, are expressed

in terms of the relative mionientw-i collision integrals. In

sections 1.3 arid 1.5, the connec7tion) oetween the w~ork of Hunter

and Snider and th~it of Curtiss dnc' co-vorkers 4s wade. In these

two sections- t'e2 relative iiomeenturn coil isiort Wnttqrals are

e/(press 'd in terns of the 1,'dL!CVd scattering mai ri A,

Sections 1.1, !.2, 1.", ard 1.5 set tiir groundwork necessaryI

for the i.;porti'nt resul lt of seictions 1.4 and 1 6. The new

resul'ts of Part I are presente~d iithese two sections; the angle
derivative operators, C ( '.qnt), td~' '--4 E (q'j' ,-ra),at) b( 'Z'a a
Eb (q'ji;,' ), and 7 (q-cx) are introduced and a number of the

summations and angle integrations car-ried out. in this manner,

C;I(Z'qnt i'; siMplified from a sixteen-fold summation and

twelve-fold Ling](e 4ntegration to a sumviation ovec eight indices
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and an integration over six angles, while q iq 'n tj k

reduced from a sunrktion over nineteen indices. and an integration

over twelve angles to a similar eight-fold summation ard

six-fold angle integration.

It is showr in section !.I thdt the ru t' -tion of

q' = t'= 0 leads to a number of interestio, ,vj ations cw0ng Lo:,e

relative monntum collision inteqrals and Lhe , f I (a)
:, q s t j

scalars. One of the ms L 4J; n tanto th,, 3- ., equalit' of
(.4 q n t an

(z 0 n' Onk and n" ri Cl k.
. -', q n C ' n t

The simplifications -)t . 'n't k u , , .': ' '

in sections 1.4 and 1.6 proviae a !,ajor fir:t s towa rd

calculation of the transport properties of a dilute single

component diatomic gas in the presence of an ipplied magnetic

field. Though within the realm of possibility, rtm.ch a

calculation proves extemeinly difficult due to the dependence

of the intermolecular potential on three orientation angles for

a diatomic-diatomic collision. On the other ha:id, the

interaction potential for an atoi-diatom coil isirn is a "unction

of a single angle. Calculations of collision cross sections for

atom-diatom collisions and transport properties of a binary

atom-diatom mixture have recently been completed 13 by R. Wood for

a gas of argon atoms with a small nlecular nit-6gen component.

This calculation involves a gas mixture in the absence of a field.

The remainder of this work develops the aI'lehic qroundwork for

At
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the calculation of the transport properties for a similar system

in the presence -f a macinetic field.

In order to carry out such a calculation, it is first

necessary to generalize the development presented in Part I to a

binary gas mixture. This is accompl i shed in Part I. Then, in

Part III, the aeneral binary gas mvixture is restricted to an

atom-diatom mixtur''e and eoyressicns for t.e spherical components

of the viscosity tensor in the presence of an appil ied magnetic

field are obtained.

• - • , .. .. . .. .. . .. .. .... ,. .--. ,-.,-, :,..,, ,,
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Appendix .A Explicit Expressions for I(qIj 2;Kja~j 2') and

iaq) witn q 0,1, and 2

The I(q,;j;I 1 1,2 ' ) sums defined Iy equat e:m 1.4-IOa) are

evaluated using recursion reltions .icng the 3--,, -efficients. 8 ' 9

Their values for q 0,1, and a re

1(OO;Kjav 1 ~'
I(," :) . ,.. \-A ) ., -:l

a p , -li r - ii - ] (

I(l0;KJ' .>') - 0 , (.A-3)

P2 .p I 2')

(I.A-4)

a (22;Ki' ' / 2,UL S 02 +2  k-l

1(21 ;Kjal' o2 ) -+ -_k (. _ ,)

12'S +11 Xl -a -

(I.A-6a)

-/ I01W ap. (I.A-6b)
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I (20;Kj' ) a 4 1 2

- !- 0 , ' ( i', l

,I. . ( )A-7)

Vt '-i'
I(2,-1 V;j'r} ) /, X+(jai )

a
(1.A-8a)

(.A-8b)

and

II(2,-; j'A-9

where

Tih o , . are constructed in

Such a .an;. , trita i :y . it on (1.4-13). For

q - 0 , 1, n,j ' ', ,.. , "

q 0o,o) , dfl(.AdO

I a (0,0) (I.A-b)

=a, ' - "r 1 . .. (at, ('A l

j*• - , . .. , -- L?". ... ;":,,*:-. J --. 'a

I~fIIi~llz I .... ... ll~7r,'-
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Ia(1,0) 0 (L.A-I2)

, ,(2?2)- (d) (a)

L ()

- ' - ' ,, I l (I.A-14)

1a (2,0) ,.,. :;K 2  h*, ,_

+ . - ) + i L(a). ( jdE-1  Lla )) ,

3

(I.A-16)

, Ia( -1! (I.A-17)

and

, i (a))L(a)

-, . , , I a-- ) (I.A-18)

where m; (a)  ( (a)

I*-. , L , and

S(a )

- A ,; -
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!A' . TORL IN AN

SFI[ID

11.1 Guru<u~r~zedWildrnann-Snider Equation

tc F

1,2In i:niSie equation is

used to Qpt ro; e!-tJUs of a sinqie component

diatomic qu. in ii ua-etic field. The starting noint of

the devel u

where i~ t he equ iIi br ium Maxwell1-

Bo Itzvmnn ir 2T.r'el operator, 2 normalized3

such ',ha4
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:I r_,t) = Tr dp f(O) , (I1.1-2a)

-r,) f d2 , (II. 1-2b)

ar:a ., ) = ,(0) (0)
0 an(r t) + U nt1(r t)

tr3fls - n -,

(11.1-2c)

+ r ( 0) [m')2 +
r 7i t-jn -- ri o occu- r

r .n op;rtor occurring in the perturbation

eXDa :,-' et, cistribution function-density operator,

In the .- '>. rm are the l inearized Waldmann-Snider

col 1 i, 1 s 'or.trr ani the Lamor precession superoperator

intri -anti t ies n, v , and U(0 ) are the

1or." ., rp,.- :i i numner density, mass-average

V01 i C- . r,- !i itvy, respectively. p is the mass

the internal state Hamiltonian

, . e -, fied. The traces are taken over

i ntiI ! lbrrum distribution, f(O) , then

3/2 H'n) exp[ - ,
"'I

-T,
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where m is the molecular mass, W = (2mkBT)-1/2(p- mvO) is

the reduced peculiar velocity, and Q is the internal state

partition function.

Thc gene-alization of equation (I.1-1) is accomplished in

direct analogy to the generalization of the single component
4

Boltzmann equation proposed by W ang Chang and Uhlenbeck and
3

discussed by Mjnchick, Yun, and Mason. In the absence of an

external Field, the linearized Waldmann-Snider equation for a

binary mixture is written

Pk QfO) _f(O)

- k k 1 kk(II.-5)

where

i<'* =  -(,)"?Trf dppf(O) [,f'dp dpkkgkit~~k
I l 'k k k vi t upik

× <;k .gk~ (Eti'~kg~k >S( + pk-g)) (II.1-6a)

(2ri)<kR-ki nk.9k > ik -¢k"kk-ki I1Jkkg>}] '

7 1
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and

(2T! .,h2Tr {fJk

Sk 9k2IE) tkzgkz> (_pk+t-k-pi) } (II.1-6b)

(2 T- i-) kQ.kzIt kZk4> Z -kIWkZ 9kZI lukti>]

6

in the above, t is the transition operator, q an kid

are che relative velocities of particle k and particle x before

arl after col'ision, and ik . is the reduced mass of particles k

and Addition of (I1.1-6a) and (II.l-6b) yields

Ak.k 4, I Td I f _ok)[ (P+dp -P-)}

1 -lpk<-zkZtu k(
(HI.1-7)

+ T27i)l2- <PkOk.,1t1' V.kgk(fk+I )-( k+ )

<Ukd k 2 .tI 1kq9k?>11S:

the rijiht hand side of which is clearly the generalization of

6i+I of Ref. 7 to multicomponent systems. The essential difference

between ' k +" ) and A4 lies in the fact that in a

multiccnFnnent system, collision partners may be of different
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The extension of (11.1-5) to include the effect of an

external magnetic field is immediate. For a binary mixture,

(o) p 2

I-t- mk f = f(O) [iLk k l +

(1t.1-8)
8

where 1. is "he Larmor precession superoperator for species

k

Lk -(L)k [()k (.1-9)

In the following section, equation (11.1-8) is examined in

detail and tensor equations are developed for the perturbation

operator, k s of a binary gas mixture. This allows the tensor

equations for the transport properties to be obtained in section I.3

Insection 11.4, scalar equations for the transport properties are

-obtained from the tensor equations. These are written in terms

of coil i .. ai scalars analogous to the a ( , q  s t "(a)

sCalars of Part I. The new scalars are expressed in terms of

binar,/ mixture relative momentum collision integrals in section 11.5,

drawino; to a close the formal treatment of a binary gas mixture

in an applied magnetic field.
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11.2 The Perturbation Operator of a Binary Mixture

The generalization of the linearized Vlaldmann-Snider

equation to binary qas mixtures, equation (11.1-8), can also be

written in the compact form

2
k iLk k + 7'(i 1 (11.2-1)

Equations (11.1-8) dand (11.2-1) are obtained from the treatment

of the following perturbation expansion of the distribution

function-density operator, fk

k ~ ( 1O)4~ (11.2-2)

Here, as in the previous equations, f(0) isthe equilibrium

Maxwell-Boltzmann distribution function-density operator. It

:I.

is normal ized such that

r r

I/p T Trba i f~O ) perdao f B (rt) (I.2-3b)

where

_C~~k  il~ dkk k"{ )(11.2-3c)

k

S-W-
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and
[-k (Lk VO) 2 + H ] dpk10 Tr k f1 kO' 2T mk-

(11.2-3d)

U()rt+ )rt = U(0 )(r,t)

in which H is the internal state Hamiltonian neglectingj

interactions with an applied field.

The requirement that n k % yo , and U (0) be local values

of the macroscopic number density, mass-average velocity, and

energy density, respectively, demands that the following auxiliary

conditions be satisfied:

0 T rk f f(O) k d Pk ,(11.2-4a)

k Tr k ~k[ mkyo] dk (11.2-4b)

And

0 Trk f(O) [W2 B (II.2-4c)

where

Mk 1/2V mk 1/
=~~P _ (2v)/[~ o] (II.2-4d)

Equations (11.2-3a - 11.2-3d) are satisfied if

(0) (n k3/ HI k
f [n ] expf-W2- -] (11.2-5)

k k kBkVT



95

Qk being the internal state partition function for particle k

Using the equations of change 9' 0 the differentiation of f(O) ink

equation (11.2-1) can be done to obtain an expression 3,11 for

k:

S=2[W (2):[Vvj 2) + 2kB)1/2 [(W2-) Hk- k -  VnTk kk -- m kk kB

(11.2-6)
2k T Ct k kk:Iu ,

trcvs esro aka cti h osan oueha
capacity per molecule, cint is the internal heat capacity .

per molecule, cint =cv-i kB  and, in the absence of external

34 (0)

forces, 3(f(O has not been allowed to depend on external

forces)
nk n n

dk =v(--)+[- nkmk.L enp, (11.2-7)

with !

-k :0.(11.2-8)

The perturbation, k is then expanded in gradients of

the macroscopic variables in the system:

f k = -Ak" 3 -( a (nT Bk: e Vvao] +n to d- n e-tDkV. r

Y0 (11.2-9)

Th

...... .. ma r s o i variables... de c ib n ....... system:.. .. .....
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in which Ak -k 'kt and D are functions of the local

3velocity, composition, and temperature. Since the gradients

in equations (11.2-6) and (11.2-9) are independent, the integral

equations separate:

2

ILr BI 6'B+? B2(W ~3W 2U) U P k~ +  + ( kB R {{
-kkkk-k k6 RRk kzt

(11.2-10)
where U is the second rank unit tensor,

2 kBl /2 E H 2
(-_-) [(W'-V) +kB- k

= iLkAk + Z A',A,)-_kl T - k ; - '
k B z=(1.2li

c. H I -- RI 2int [2 21 -1 k I ( k] -iL D+ Y(1,, % z
(11.2-12)

and

2kT / _ - ) .

-) n -k(kj 6ki = Lk(Cki -j
k k

(11.2-13)
2+ j (c.=l [k (Cki-Ckj + k (C i-C~)]

The last equation is obtained by consideration of the condition

on the dk stated in (11.2-8).

* a



97

Equation (11.2-10) requires that Bk be a symmetric,

traceless tensor. Thus, it automatically satisfies all three

of the auxiliary conditions 8 expressed in equations (11.2-4).

The Ak and C automatically satisfy (I1.2-4a) and (1I.2-4c),

however, (II.2-4b) yields the two auxiliary conditions:

0 A ~ A TrkJ fO) (A-Wk) dPk (11.2-14)
kkj k *-

ana

0 = k mTrk I fO) ([CkiCkj].Vk)dPk .(II.2-15)[
k

The D on the other hand, satisfy (II.2-4b) automatically,

while (II.2-4a) and (I1.2-4c) provide the remaining two auxiliary

conditions:

0 = Trk J f(O) k dPk (1I.2-16a)

and

Tr ' w+~- p (I.2-16b)
k Trk k k kT

The integral equations, (11.2-10) through (11.2-13), along

with the auxiliary conditions stated in equations (11.2-14)

through (11.2-16), may now be solved for the Ak I Bk , _k,

and Dk. It is useful at this point, however, to obtain tensor

equations for the transport coefficients in terms of these

quantities. This is done in the following section.

-. ~,i
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11.3 Transport Properties of a Binary Mixture

In this section, the perturbation operator of section 11.2

is used to obtain expressions for the pressure tensor, P , the

diffusion velocity <Vk>AV , the energy flux, 9 , and the

anisotropic, (symmetric, traceless) part of the dielectric

tensor. [t](2) , in terms of the A k 9k ' C-kz and Ok

Comparison with phenomenological expressions for P , _>AV

and [e](2) in terms of the experimentally ineasureable

transport coefficients yields expressions for the transport

properties in terms of the A , B C , and D-k 9 k 9 ki k
The pressure tensor is given by the following phenomenological

3
relation:

P = - 2n : [Vv 0 ](2)- K(V'v 0 ) , (11.3-1)

in which p is the scalar pressure, is the rate of

shear tensor (symmetric and traceless), n is the shear

viscosity tensor (of rank, 4), and < is the bulk viscosity

tensor (of rank, 2). In terms of the distribution function-

9density operator, f

= B Tkf fk k k d-nk

-
2 kBT Trk I f0) ('"k) Wk Wk dpk .Pk 32)

kh
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Neglecting the terms involving temperature and concentration

gradients,

B I {Trk J fO)_WkWkdPk - Trk f fkO)WkWkBk _vdPk

(11.3-3)

- Trk f f(O)WWDk Vd-Pk

In the above, and in the equations to follow, the integration

over Pk can equally well be taken to be an integration over

particle momentum or peculiar momentum.

The following identifications can now be made:

Trk F(Wk)WkWkdpk Y Tr F(Wk)W~dpk (11.3-4)
k kf k 3=i k k

yielding P - kBT Trk f(1O)W2dP nkBT ; (11.3-5)

n B T Tr dkk~ (11.3-6)

since Bk is symmetric and traceless; and

2kBT Trk I fO)WkkDkdpk . (11.3-7)

Bk
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Similarly, a phenomenological relation involving the

diffusion velocity is given by the expression: 
3

kn T
n-Mk V mkdDk 'V i T , (11.3-8)

in which Dk and flT are the multicomponent diffusion and

thermal diffusion tensors, respectively. In terms of the

distribution function-density operator,

<Vk>AV n Trk fkkdPk (11.3-9)

and consequently, neglecting terms involving vv0  and v-v0

nk mk -k >AV -mk Trk f fgO)Vk Y fn T dPk

(11.3-10)

+ mkn Trk k dpk

since

Trk { f(O)Vk dpk = 0 (11.3-11)

In this case, the following identifications can be made

immediately:11

k - rk f0)V dpk (11.3-12)
2 k 4

4-I
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and

k m k Tr k f k -k-Ak dPk (11.3-13)

The phenomenological expression for the energy flux 3,9 is

k T (y --- -_) k -XO._TB VA

kTT

-nkBT r 1 T
B nm ~k

in which "AD is the thermal conductivity tensor for a gas mixture

of uniform composition, that is, 0 is the thermal conductivity

tensor in the limit that no thermal diffusion has occurred.

If equation (11.3-8) is solved for the d in terms of

<VI'AV and VT , and the result inserted in (11.3-14), the

new coefficient of VT is -_ , the thermal conductivity

tensor which is ordinarily measured.

In terms of f k the enerqy flux, neglecting terms

involving Yv0 and -vD , is given by: 3,8,9



1 02

2 kBT
(Tj-/-) Trk { fk(kBrW +dHk;k dpk

- k kk kBk "k'k

S kBT/ {-Trk [ f(O)(kBTNW+H )WkAk . _ Z Tdpk
k ( k

+ n Y Trk fO)(kBTW2+HW d dpk}

(11.3-15)

since

fuo)(kBTW ° + H d)Ak dk 0 (11.3-16) 1
Now, using (11.3-10),

5 <H'>~ H~
k8T (+ kT -n-)kkAV -k T kT

(11.3-17)

x (Trk f fkk'3k. .tnTd pk - n Trk fk(O)Ykkz_(. d.3dPk 7

allowing (11.3-15) to be rewritten:

<H(>k

kBT 5 ( "'2Tk k A (11.3-18)

- ~ kBT 1/2 r~ )(2 H _ <Jikk

H' 5 <H>
A.ZnTd -n S Tr fko)(WB+ k -C*d.dDk}

-2k k Pk k B k B "ZTBTI -k-kL -

-tile.. ..
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By using equations (11.2-11) and (11.2-13) along with the symmetry

properties 6'8'1 2  of , 6 , and Lk , it is possible to

show that (see Appendix I.A)

2kBT fO k 1H'"k

k Tr k B kBT-k-k• d dpk

- ~ DT d ,(11.3-19)

=k . -k I1

yielding

q kBT kT)n kN AV
- k B

2k BT )1/2T r f(O)(W H 5 _H___- kBT -- - -)  Trk (W W + k- - k--T )Wk ". Td
1 m.k Ik k kB T~T kT) k -n Td Pk
k~ ik B B

- nkB =T • dg , (11.3-20)

from which the identification can be made that

2kBT f(o) 5 H" HkW.
A0  kB8  (--) TrkfI (W)W-+ kT - dPk

(11.3-21)

Finally, if only gradients in vo  need be considered,

the symmetric, traceless part of the dielectric tensor is given
13

by the phenomenological expression:
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(2) = -2S L'Vo(2)  (11.3-22)

in which is the flow birefringence tensor (of rank, 4).

In terms of the distribution function-density operator, 
13

2= 3 __3-/2 2)
_ -- )n- ( [Trk dp f 2 ')"

2,,r I nkH ~ Trk d-}'

(11.3-23)

in which a,, and a, are the electric polarizabilities of a

molecule parallel and perpendicular to the symmetry axis of the

molecule, respectively, and in which the second rank tensor,
'2 '2_ 3  -(2)

{/2j k(J4--)] /2[JkJk](} , characterizes the angular

momentum polarization 14 of the molecules of species k

Again, the identification is immediate:

2 2 3- z1 (2)

" nk(oL =)k Trk  f O k k- 4J k ( =k
(11 .3-24)
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Using the perturbation of section 11.2, expressions have

been obtained for the shedr viscosity tensor, n , the bulk

viscosity tensor, K , the niulticouponent diffusion tensor,

DTthe thermal diffusion tensor, D , the uniform composition

thermal conductivity tensor, X3 , and the flow birefringence

tensor, . In the following section, scalar equations are

obtained for the above quantities, yielding expressions more

useful for computational purposes.

.. ......-. ... ....
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11.4 Scalar Equations for the Transrort Prooertes

Equations (11.2-,0) throut:- (i.2-13) can te written -"n

terms of tensors in the Wang Chang-tihienbeck basis. Expansion

of the unknown tensors of the perturtation operator appearinq

in these equations over a total polariZation basis leaas to

8
a partial uncoupling ciue to thc conservation of or~arization.

Th is yields the iosired scalar eoquations for tn'e transport

properties.

In Ref. 12, the Wang Chanc-Uhlenbeck basis elemients are

defined:

the L P5 (Wk being velocity tensors composed of a product of

an irreducible Cartesian tensor, [W]"~ of weight p , and

an appropriately normadlized 7associated Laguerre function,

IL The left hand sides of equations (11.2-10)

through (11.2-13) are expressible in terms of the

g;pqst elements just defined. (11.2-10) through (11.2-13)

can then be written



1 07

2
iLkBk + I 6jB, 2 (~W W 3 2U)

- L20( (11.4-2)

-V'k

ILA + 2 2k T 1/? Hl-5rk-k~~ 5 kk~ k'z2 kA. B&A +? -C ) [) - -T .
A + 1 2 / k ki -z(W1n k )(kBT)

kBT 1/2 cI_ [t
2 k k k2 B

C k
(TI'-Vil" ~ Lw B mt Rnt~ (1.4-3

- 7 mtloo F- k~io
k/ 2  B ft]

3 k~oi int kB k;OO ; i
iL D + U.4-4)

and%'+''zd c

-~~ k - .
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2
iLk(Cki-Skj) + z [( (Cki-CkjkV Ci-CZj)]

2kBT 1/21(_(i k) /k 1 , )-'k-k Wk( 6kJf(ki)

(11.4-5)
2k BT 1/2
( T )'- L'O(Wk)(6kJ-6ki)

kk

kT) 1/2l

n =k k;1OO( 6 kj- 6 ki "

The transformation of (11.4-2), (11-4-3), and (11.4-5) to

scalar equations is accomplished by writing them in terms of

their spherical components. As in Hunter's treatment of a

single component system, 8 the spherical basis chosen is that

of Chen, Moraal, and Snider. 12 Their basis tensors, epm ,

transform under rotation according to the irreducible

representation of the rotation group. Furthermore,

_ , _"n = mm' (11.4-6)

where

and

p eP pm E( p )  (11.4-7)

=m =M -.
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where E is the projection operator onto the space of p-th

rank symmetric traceless tensors. Consequently, the e are

orthonormal and complete.

The Bk appearing on the LHS of (11.4-2) are symmetric

traceless tensors of rank 2, and consequently, their spherical

components are obtained by dotting them with e m

Bm = e2m 2 Bk (11.4-8)

The Ak and Cki of equations (11.4-3) and (11.4-5) are of

rank 1, and so their spherical components are obtained by
lm

dotting them with e :

= lm -A (11.4-9a)

and

Cki = elm ®Cki (II.4-9b)

Note that (11.4-8) and (11.4-9a) are simply component versions

of H-44 and H-52.

Using the above and the fact that the spherical components

of the Bk;post are given by

Bm M,0=p B (11.4-10)k;post - k;post '

. ... ., 4 ,. .
m - ............ ddn .....
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it is possible to obtain scalar equations from (11.4-2),

(11.4-3), and (11.4-5) by dotting (11.4-2) with e , and

Im
(11.4-3) and (1.4-5) with e In addition, noting that

k;oost is a zeroth rank tensor, i.e.,

Bk;oost = k;oost ,(I .- l

(11.4-2) through (11.4-5) can be written in scalar form:

/ 2 i kBk + (6IEm,4? ) , (11.4-12)

k;2OOG kk Z=

kBT 1/2 B' M o 2

(-kk-1) r k k xk;100i - / IO  = iLkAt + (6;A'm+%' Am)

Cit-----kk (I1.4-13)
/k i

-int B + Cintt B o] = iLD k  (41k Dk+6?kO)
C, k;010 - m k; C kk k 9. k ( Z k 91 . )

(ii.4-14)

and

(kB)1 2 l Bmo Cm  m

k k k;iooo kj ki) iLk ki kjJ

(II.4-15)

2

(C C

Z=1 v Ck i Cmk k k- !



The spherical components of the Wang Chang-tUhlenbeck

basis operators are given by

B lu y s = eP OP B Oq q,\)

which in turn yield the spherical components of the total

polarization basis: 8

k;pqst qL ~ps (II.4-16b)

The components of the perturbation operator are now expanded

over the total polarization basis:

B m Bpqst B (a)m (I41a
ptaB(a)m;t k.;pqst (I41a

A A ~~pqst B(a)m (141b
Am pqsta (a)m;x' t;pqst '(I41b

DZ D= 0 DPf1t B (a)0 141c

and

Cm C qt B(a)nI
C. pqsta (a)m;gi k;pqst '(11.4-17d)

in which the 8 (a)m are the basis elements, and ~pqst
2.;pqst (a)m;R.

APqst DP~ and )Pqst are the unknown expansion

coefficients.
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Utilizing the above,

2
;2-0 .(2m1 [B pq tZL ) (a)mi
k;00 11 pqsta (amr;k6 + k k;pqst

+ Cpqst ~Ba) 1(11.4-18)
an;, ' kz Rapqstp

2~~~~~(~ kL 2(am,+ Aa;;pq ~ zps

= .~r()k;0' ,i k ' k;pqst (~; .p

t1pqsta

kBnt IT n Bt (11.4-20)

2 ~ l W t Bk.t WOd

(aQkk k k;pqst~ EDa'O;Z z? p

t=1 pqsta

and
kBT 1/'- I (6 -6m

mk- k;ioo kj k

2 ((Pst ~ pqst (a ]Z fc,.(- c L (11.4-21)
= t=1 psta (a)m;ki -(a)m;kj U(kLi"kLkhI'k;pqst
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The basis elements, kB qs aenrmalizEd such that

«(cr IB I) I It Ik = 6(aaja'ci)S(pqstjp'qs't')
k;pqst k;p q k

(11.4-22)

where the inner product for mixtures is defined 12 as

<<A JB -Tr (d f (0) (1.423k k >k n kk P -k k k k (1.-3

Multiplying equations (11.4-18) through (11.4-21) from the left

by k (p~'t an taking the inner product, the following

set of matrix equations is obtained: '

v"T 6(p'q's'ta' 2OOO2)

2[P~S (a)m >>~~kikI
L t (a)m;k K;p q'st'kps

Z l pqsta
(11.4-24)

(am; [8 qk.'pamq ~

k

!BT [ !; ( p'q's't'a' lQ0ll) - 6 (r'q'st'a'Jll~l1
Mk k8

2 <(am ,((ait )m~

1=1 pqsta (~~

(a' )rn W Tv' (a' m (11.4-25)
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/k kC int Bi'- cSp a kBint 'ta

3S(pq's't'a'iOOlOO) + Cs'1OOOL)]c 3 C int

2 Dqst (a)O
- -l p t (a)O;k k;p qst +I'i6Lk k) )IBk;pqst k]2.=l pqista

(11.4-26)
+Lpqst KB(a')m' B (a)O >>+ aoz <  'I 'k

(k;p'q' t' kZ' Z;,pqst k

and

kBT k

mk k

2
-CPqt - q7 [t

{qt (a)m;ki a)in;kjZ=I pqsta
(11.4-27)

< < B(a )m ,> . (a~m>
.-k;p Iq Is t, (i k ZL k)lBk;pqm >k]

+ [(Cpq st _Pqst )<<B(a')m '  I, B(a)n >>p
(a)m;zi (a)m;Zj k;p'q's't' kZ -Z;pqt k

The fact that RkZ and I Z are invariant under all

rotations,8  and consequently conserve both total polarization

indices, allows their matrix elements to be written

(a(a)a k ),- I( soA, a)« 8(a)B (a )c±
<<Bk;p'q s' t' k1I6,i Bk;pqst >> k =(a'ct' au)<< B kp'q k B pqst>k,

(II.4-28a)
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and

'Ct ' 1 LB (a )u > I
<Bkppq S't'l .k;pqst - k ' ..;pqst >k"

(II. 4-28b)

It is convenient to define two scalar quantities dS the matrix

elements appearing on Lhe RHS of (II.4-28a) and (11.4-28b):

S' [p' q '  s' t'j a) (a)a (a )(t >

q s t k;p'qs't' 1 'k kpqst k
(II.4-29a)

and
S,[ ' q- s t'j a (a - jzq t,,( l ) a ,-,s

p q s t j k .,lls t -pqs .

(I.4-29b)

Lk , on the other hand, is invariant only to rotatiouw about the

field direction. Consequently, it conserves only the u

index, and explicitly,

< :na' )a' B(a)uI j a

L6(p'q's't'&j pqstrY)L (a a)
k;p'q's't'L k k;pqst Lk V) pq

where (II.4-30a)

(pq P9cx-c, pq ( f

(11.4-30b)

J..
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Usingj thp above, equations (11.4-24) through (11.4-27) can

be rewritten:

if (pqstal2OOO2) 2 (a'mt [Saa (p q s kI= p'q'Is'tCal

(a r)w;z aa' q, S' t 'A' k WLkSOst qtLp a

(11.4-31)

k B TW - -cf l v ( p s7 I O . 1 - / S ( p q s t a i ] 1 1 1 )

2 ( S .6 !' p q s t ), a
p a ja'i,. aa' 0n q' so 1t k2.

+I A Ycit ' s s t (a) C 6 M)

m aat[ p Q' s' t'jk. 7 kZ )k(-Os't!'pq s t) Lpq (aa')]Th

c /kB~
3 V ~ psaO1O I/ c i--- 6(pqstalOO0ol

2- pqlst~ is$fp qs t](a)j
z1 P'q's't'a'f (a').; aap qks

+ p (a'st (p q s t +SMT'ps) a

(11.4-33)

and
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(kBT)1/2 I1-5psalO1(
nk (psa100)(k-ki

2 $.p'q's't'o p'qas+t . , pp(a)

m;sj'(a a S,;,i (a) j saa p q s

+ c 5I 1 p q s t(a)+i. , 6c~s'tlpqst) (aa')]}
('?);i (a' )m;Lj aa p q so tV) k z kLt' pq

(I1.4-34)

The above set of matrix equations can be solved to obtain the
expansion coefficients, p'q's't' DP'qs'tS

(a')m;k ' (a')m;k' (a')O;k
rpqS't' 8

and C (a);ki , subject to the following auxiliary conditions:

0 n (11.4-35)k ' n,, k

0 = nk m k (C13'0 i-C°°0 ) (Ii.4-36)
k lm~ lr;kj

D"o5o;k (11.4-37)

and
7 ) k 'c int r-2 _ D O) ~ .

ko B (00k O0k

(11.4-38)

Recalling equation (11.3-6), the shear viscosity tensor

can be written (since Bk is symmetric and traccless)
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-]'k1T ik' B(2)iBk >k (kI.4-39a)ri k. IB nk <B 1 .4-39a

Expanding in terms of spherical components and then over the total

polarization basis yields

S T nk e'BM(?)m Bn e' >
_ = kB L =m k;_ooo' k -mk Imi

T ' e2m (2)tr B(a)m, ,,pqst "

= -k n pqs. " B k;pqst (a)m';k m'k ln:' pqsta =

(II.4-39b)

Using the above, the viscosity can be expressed as8

n : e2 m ne, (11.4-40)

with
kBT

m 2- nk B °(2)m;k . (.4-41)

Similarly, since Dk is a scalar, equation (11.3-7) for

the bulk viscosity tensor can be written

= 42k 8T Xk (2) 0-

B =k;-000 3 k;o u=} () k

= /2k VT (0) (0)e2m.,B(2)m (n
I/2"kBT n n-;<B O ID k) >k U+ g <B k;2ooo ID k -k}

K;O0 k0 = ()0m

1 kBT n(e 2000 riUDI01O (11.4-42)
k D(2)O;k -- u(0)O;k

-i ,- -
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Consequently, 5 can be expressed as

6 = gl - U n , (11.4-43)

with

B2 k j (11.4-44)

and

r) -~- ~T ) nk0010
nv 2kBT k D(0)0;k (11.4-45)

*Recalling equation (11.3-21), the uniform composition

thermal conductivity tensor can be written

=(B)/n« + B II >

(11.4-46)

In terms of spherical components this becomes (after expansion

over the total polarization basis)

kB 1/2 r elm
0 k~y k k mmunpqsta

Q~~ .(l)m i Im (~
7ck110 Bk oo ~) m t>> pqs t e,

k;1 kB 01oo k;pqt k (a)m';k -M

(11.4-47)



120

This leads directly to the expression8

%0 = k elm ne (11.4-48)
m

with

k B 1 2 A_ _ 0 0Xo= kB i (k_) -ci~tA1o1 o (11.4-49)
k k 1 i A(1)M;k 2(l)m;k

The flow birefringence tensor is treated in direct analogy

to n • The spherical components of a are given by

-- n2 B 0200 (11.4-50)Bm 1 k -Tr1 r' l- _k B(2)m; k .

The remaining two transport tensors, the multicomponent diffusion

tensor, , and the thermal diffusion tensor, D, are treated

in direct analogy to xo . The resulting expressions for the

spherical components of D and D are
nk k2

m k ( )1/2 1000 (11.4-51)
k n m k (1)m;kR

and

DT (mkT)1/2 (11.4-52)
k;m k B nk ()m;k

___- ' , , ~ - .. Kp



121

The above expressions for the spherical components of the

transport tensors involve specific expansion coefficients,
(q st) (a),

which in turn can be expressed in terms of the S' - q , jk
Sig ( , qs, t I (a), and L(m)(aa') matrix elements, once the

Sipsq' s' t} ki pq

set of equations (II.4-31) through (11.4-34) has been solved.

In the following section, S'p q. s .tk and' s'tk an

S"g (p, q , t, (a) are examined and related to the collision

integrals of Part 1. To the extent that these can be determined

computationally, the transport properties of a binary gas mixture

in the presence of an applied field can now be determined and

compared with results obtained experimentally.

MO
V.
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so(pq tS. (,q s a
11.5 Expansion of the ' , q S t 1 aV and S" I s o t 6V

in Terms of the Re1 ' -e Momentum Collision Integrals

As in Part 1, it is possible to expand the scalirs,

Spqst ](a) I ) ](a)
I q and S" p q s , appearing in the

matrix equations for the expansion coefficients, in terms of thef, q n t16 f 2 nt 6

collision integrals, a' n Wk and , q n tt ' t Z' q' no t'i k

Here, to avoid confusion with the k and z indices that appear

in the collision integrals, the species of the collision pair

are labelled by the indices & and v . The development of

this section relies heavily upon analogy to Part I, and

consequently, avoids details already presented there.

If, as in Part I, only a single component gas is being

considered,
8

(a p' 8BTtp q s tJ (a)&(a '')
pqst p q st8t T n '

(B1.5-1)

Recalling that 6? can be separated into 6?' and 6" , this

could be rewritten as

- -~a~l~i(a' )a'::

pqst p'q's'

n ( B T- -  'a )(o' ' ' s' ' a q' s t.)' '

(11.5-2)

-. - - -Iv-r- . -- . .. ~ ,- . ' -
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in which

q s t1 ( a) : nlkT 1/2 6(aaa,)<B(a)adIIB(a')Q.

q ' S tj' = n BT pqst pq s't'>>

(11.5-3)

and

, )kT 6(aala'a ' ) B(a) "  B I I : I>
qB T pqst pq s'

(11.5-4)

From the development of section 1.2 it is also possible to write

the above as

,fp q s t I (a)

Ip' q' s' t'j

= (-l)q+a+P'. (-1)kc2(k)Q(kq'q)/") p'kl i ckk')1/2

O.n'

x 1(k) n' , , (II.5-5)znz'n';psp's' ; q' n t Ik

and

[p q s t )(a)

p qI s' t'j

-q+a+P'y (_,)k 'q , qI n'

kfp' p ak~ gn
'no

x I(k) s' " , q n,'t (11.5-6)
xni'n';psp' q k
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Equations (11.5-3) and (11.5-4) can be generalized for

binary mixtures as follows:

c (a )oL ' (a )c T " 1/2 5(aula'a') ' q' s t1a

6;pqst 6' 164 B iv IT pS q' s' t'SI V

(11.5-7)

and

< (a1"' IB( a ' ) a '  n ''P 6 V)-1/2 6(dA(a a ')'" [ p  q stJau)

6;pqst 1,v V;It "-- V 8kr BT ( p q' s' t' 6v

Equations (II.4-29a) and (II.4-29b), along with the above, lead to

' q' S' t' 6V = v8kBT p, q, s' t' 6v

(11.5-9)

and

S,'( q s t n (t}(a)I o 1/2,..(p q s t '(a)

S"tp q s t 8BT ' q' s' t'J6u

(11.5-10)

Equations (11.5-5) and (11.5-6) reflect the fact that they

have been derived for a single component gas in that they

involve the quantities, I (k characteristic ofinvove te quntitesIntn,;psp's ,

F such a system. The generalization of (11.5-5) and (11.5-6)

o a15|I to a binary gas mixture requires use of the Talmi transformation
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as presented in Ref. 12. The resultant expressions are

p. q (4,)/ is)(gavo t ](a)
=(- 1)q+a+p' (-1) k Q2(ky2.(kq'q)I/2{ q q1

nz.'n';psp's. 61- ' it q' I' t' kZn
R ' n '( I . -1

and

(p q s tj(a)

( q p' qSqk
-I (_I~ap (_l- 2k) (kq Iq)i/2 {, p' ka Qn (kW )1/2

k in

to )4n'+2'-2s'-p' (kn)n,;pp ,s, q n' t(-I I- Ik ( ,V)a,,t q1 r? t!] v k

(11.5-12)

with u 1/ psp's ( ) as defined

in Ref. 12.
' t q' n t k6 Zn I Q  q, n t )6V

In the above, 'q n t'k

are generalizations of the collision integrals given in equations

(1.4-15) and (1.6-9) and are similar except that in these

quantities, collision partner, a, is of species 6 , while b is

.h&.&4
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of species v . Thus, the generalization of the single component

development of Part I to a binary mixture is accomplished by

properly considering the transformation to center of mass and

relative coordinates using the Talmi transformation.

Finally,

S.pq s t ',(a)
p q s't'j~

- ( B T)k Ip a)

in 8kn'Ps' TV q' n't

zin g 1 . - 3

and'

Sni'n qps s t (a)'' '

I II 5-14
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The above quantities may, in principle, be computed, and

consequently, so also the transport properties of a binary gas

mixture in an applied field.

IL.
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11.6 Sumary

In suumnary, the linearized Waldmann-Snider equation is

generalized in section 11.1 to a binary gas mixtuin in an

applied magnetic field. The detailed nature of this generalization

is examined in section 11.2, and tensor equations are obtained

for the perturbation operdtors, k appearing in the perturbation

expansion of the singlet distribution function-density operators,

fk * The expressions for k are used in section 11.3 to

obtain tensor equations for the transport properties of a binary

gas mixture in an applied field. In section 11.4, the tensor

equations for the transport properties are transformed into
, q s t )(a)

scalar equations involving the quantities s'P I' s ')(a)q p' q ' J
an qst1a)and S"(1, q' s' t' 6a). And finally, in section 11.5, the

relative momentum collision integrals of Part I are generalized

to collisions involving two molecules of possibly different

species. It is then possible to express the scalars,
(p q s t )(a) S q t (a) in terms of
p q' s' t' n q sf t'K

q n t 6
the binary mixture collision integrals, a' I n  and

all (Z q n t 6V

OV q' n' t'Jk

With the results of sections 11.4 and 11.5, it is now

possible, in principle, to calculate the scalar quantities,

Spq s tp q s t (a)S' q s t (a) and S(p' q' s' , for a binary

mixture and using them, solve a set of matrix equations to

- .. ,~-.-' I
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obtain the shear viscosity, bulk viscosity, multi--component

diffusion, thermal diffusion, uniform composition thermal

conductivity, and flow birefringence of a binary gas mixture

in the presence of an applied magnetic field. The field effects

on the shear viscosity, thermal conductivity, and flow birefringence

are the most widely studied and reported experimentally. 16,17

The uniform composition thermal conductivity cin be related

to the experimentally measured theral conductivity through the

Stefan-Maxwell equation. To calculate the uniform composition

thermal conductivity to the same accuracy as the shear viscosity

and flow birefringence requires a arper basis set, due to the

greater importance of internal polarizations. Con, equently,

calculation of the thermal conductivity requires the solution

of a larger set of scalar equations than does calculation of

either the shear viscosity or flow birefringence.

Calculations of co-,parable ,,ccuracy can be performed for

either the shear viscosity or flow birefringerve using basis

sets of essentially the saine siz(. Since the ficld effects on

the shear viscosity have 1een widely studied v.m inmentally,

the shear viscosity is treated in detail -in Part II. The

discussion there is intended as an example of the type of

treatment that is now possible for any of the transport

properties discussed in Part II.
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Appendix II.A Demonstration of the Relation Expressed in

Equation (11.3-19)

The relation given in (11.3-19) can be demonstrated by

means analogous to those used in section 7.4.c of Ref. 9.

A sketch of the procedure is given here.

Using (11.2-11)

( 2 kBT (O H <H'k

Tr)f-5 kT) 11  C d dpk
k m k rk f k kk B T2 k BT '-k 4zt (1lA-a

• (II .A-la)

k Trk { dpk fO) iLk Ak+ ) (d? rAk+6?"rArlC d

k _ r=+ kr-r-k

The RHS of (II.A-la) can be written

Z Trk I dp fk) (is L +43 )A C d , (II.A-lb)

k k k kr r kr r k

where +krAr r kA r . In the above,

Trk j dpk~ 6 ~ - dk Pkfk(O)Ekr'kz Z

= -(2fl)Th 2 Trk dp- f~0 (Tr J d- (p [j dp dp
<k krgkrt , > ,

+llkg >(- (A +A
x Okr-kkr -k -r < -k~rl (E)t*l ukr-gkr>6-P -WPr-P---r

27 + '<-krkrlktlkrgkr -k+r )  -(Ak+A r)krgkr t"lkrkr>}] ki-d ,

(I.A-2)

--4- , ,*
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where the prime~s on Aa nc indicate a functional dependence

on arnd p r reszvectively.

Switching indices in the term quadratic in t and

"syrrmetr iz ing"

Trklfd Pk f "'6{ AC *dk krrkL-

Tr Tr d Iffl d"f) f r

<ljr-ki 1"kr -k -r)<kr-kr t( Vrr>2kPI2)

fO)f r(~i

+- I; ~kr9krIt kr~k( -~k -r

C +C
+(A +AcI t .1-k -

k ~r' krgkr' Ir-krk

- -(27)4h- Tr Trk 11 dkd o do d i1 ) f O(A k+A)

r<kkkd~r r k, r -k -r

* <Ok. rgr 2 '-kr~r,r-lkr'~krk

fkOto C +C
*- - k-Z kE r j -k~. -Z~r~ jOr~r -I , rk (1.A3
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where use has been made of the property6 that

<I~k~krtilkr~r> -<~k~krt ~(II.A-4)

By removing the "symmetrization" from A k+Ar and utilizing

energy con serva ti on,

Trfdj r ( dp f (())[ C ]A dk k')6rr-k, 1 j -r rkk r ' d

(II.A-5)

jIt can also be shown by similar but more straightforward means

that

Trk I dpkf~o) L AC *d =Tr df dr. 0 [6 kr Lk]A ,dk [kr r-r]-kl -i r PA )k U-r -

(II.A- 6)

Eq~uations (II.A-5) and (II.A-6) allow the demonstration to

be completed. Beginning with the RHS of equation (II.A-l),

[dp f(0)[(i6 L +?)A ]C

S'Tk -k k kr r kr -r Uk -i
ktr

Tr d L,6? )C ]A *d

kzr ~ P f$ 0 )Ui6 kr Lk rk-k-

* - 4.

(ILA-7
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Using (11.2-13) and (11.3-13),

-2
Trr [ d~r f(O) ikrLk+6r. r d Pr r _U k

2
= Y Tr I dpr f(O)ii 1 (61C -1C)A dr r dPr L r-r* k=1 rk-rz rk-kz Ar •

Tr r n f(O) v 6 ]A - d
r Jr dp r n r -r -i

-- D - (II.A-8)
L

Thus,

(2kBT1/ Ty (0 '1k 5 'T )

k mk Tk ff k (Wk:' -k k k -tPk
(II.A-9)

1 d
m n

and the sketch is complete.

~e
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PART 111.

SHEAR VISCOSITY IN A MIAGNETIC FIELD

111.1 Solution of the Transport Equations for a Binary Mixture-

Example: The Shear Viscosity

The equations describing the effect of a magnetic field

on the transport properties of a binary gaseous mixture,

developed in Part 11, are valid for mixtures in which both

components are diatomic. Since a calculation for a diatom-

diatom mixture (or pure diatomic gas) is considerably more

difficult than an atom-diatom mixture in which the diatomic

species is present in low concentration, the solution of

equations (11.4-31) and (11.4-41) for the shear viscosity

tensor in this special case is considered in further detail.

Thus, the equations of the previous chapter are reduced by

considering the limit in which one of the diatomic species

becomes spherical while the other diatoic. is present in

low concentration.
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In section 11.2 an expression for the shear viscosity is

obtained subject to the above restrictions. The truncation of

the basis set is that used by Hunter I in a discussion of a

single component diatomic gas. In section 111.3, the collision

integrals involved in the shear viscosity calculation are

examined in some detail. Their calculation in the classical

limit is outlined in section 111.4. Finally, a qualitative

comparison of the field effects predicted by the expression

obtained in section 111.2 with experimental observations is

discussed in section 111.5.

- L.i..-

I4--
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111.2 Spherical Components of the Shear Viscosity Tensor

In this section, expressions for the components of the

shear viscosity of a binary mixture in an applied magnetic field

are obtained using a truncated basis set. The results are

expressed as ratios of determinants. For the special case in

which only one component of the gas is diatomic, while the other

is atomic, simplifications are possible. Expressions for this

special case are given in detail.

Recalling equation (11.4-41), r, is determined by the

expansion coefficients, B O20 and B 2 0 where the

subscripts, 1 and 2, label the two species present in the

binary mixture. If the basis set for each species is truncated

to include only the terms pqst = 2000 and 0200 , (requiring

a = 2) equation (II.4-31) yields the following set of equations:

'10 r~ +~uo 1 +~o) 2 0

1(2)m;l (2o 11 (2)m2 2000 12

oB 0100S,(,oo00)(2)+S,(2000)(2)+SI(200o)(2 0200 s,,(2ooo (2)
+ (22) o 2"(2000 ) (22 (2))2, 2

11 B20001 ~ uu~ + B((200)) S S( 0200 1
(1ll.2-1)

vr: B' 5; I(S,,2ooo)( 2 ) 2o0 - 2o(22)+S" 22) 2o(2) 2)]

(2)m; 20 2 +( 2)m; S 2000 2 2000 2000

+ B 2 S (20021+ B (2)m S'(0200 22+  020c) S'(0200)
(2)m;1 5 00)1 + 21]

(111.2-2)

-
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2 0 ,, 0 00 (2) 02 0 (2) 1 0200(2)1+ 2000 S10200( 2 )

(2)m; 1 2;00 1 + 20 0 0)1 1  2000)12] ) B() 2  200012

0200 - 0200 (2)+s (O200 (2)+S (200 (2)

+ Bu(2)m;l I(2°°°)11 0200°)11 SI02 012J L)1

B0200 0200 (2)+, 0

B0200 S( 0200)(2) (111.2-3)(2)m;2 0200 12

and

o 2 00 0 1S,,,02oo.(2 B2 000  ' Zoo (2) o2oo (2)+ s,, 20, (2)lB(2)m;1 S2°0021 "+ (2)m;2 ( 00 )22 +S"(2o00022 2 21I

0200 0200 (2) 0200 L*0200 (2)+,, ,020O0 (2)+ I0200 0(2)+ B(2 )m; oo0021 +B(2 )m;21 0200)2 °2° 2 "(22 ( 2 1

+ im (WL)2i (11.2-4)

B2 00 0  and B2 0 00  can then be expressed as ratios of
(2)m;1 (2)m;

determinants:

12 13 14

F2 Am A(m) A( m
22 23 24

0 A(m) A(m) A(m)32 33 34
0 A m) A(m) A(m)

0 42 43 44
2000

B~ 0 [ (111.2-5)S(2)m;l =(I . -)

JA
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and

BmA(m) r2 A. A(m)11 13 14

21 23 24

IA~ m A (m) A (m)31 33 34

A(M) 0 A (m)41 43 44

(2 )m2 A0 ) (111.2-6)

1 ij

in which

*A8) IS (2000)S"(2000)> (2000) ,(III.2-7a)

A(m) S,(2000 (2) ( 2
12 ?030 12 (I1l 2-7b)

13) 2S 0 (2+l 00(2)S.2000)(Ao0 (2) s"(o 0200 ( 0 oO (2)0 ,(III.2-7c)'(OCCO (2)+"020' 2
3 _ 11 )11 '121j

A(m) = 02 0 0  (2) (III.2-7d)
14 =12 v

A( ) ,00 (2) ( 2000 ( 2

2 L 2 09 S a (200on) (111.2-7f)22 L2 22 _2 "
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A(M) = S,.,2000 (2) (I11.2-7g)

-23 (02 00 21

A(M) 2 0 2oo02 1 (111.2-7h)240 ( 2 ) +S"( 200  (2)( 2boo21A 4 Y(20)2 (20) 22 21-

S s (0200)(2)S 5 0(2)+(020)(2), (111.2-li)

31 ' ~ 011 11 o0O l oo012A(M) s "Oo ) (2) (111.2-7k)32 (-000)12

(M 020(2~)+S., 0200)(2)+S. 0200 ())+ im(WL4
(11 .2-7k)

(M)= 0200 (2)
34 S"(0200) 12 (1.-t

AMW) S (200)(2) (111.2-7m)

41 S2000)2

S0 2) 0200)(2)+S, 0200 (2) (I11 2-7n)

AS' (22 S(20+0)22 (2000)2142 L 2°°22 0022 zoo21 _1

(i) s,,,0200 (2) (III.2-7o)

A (0200)21

20) 20°(2)+S"(0200 (2) 0200 +)A'(M -S.(02001 22 S"(o)2 +S (0200 ) 1+ im(.J4400022 0'022 20021

(III.2-7p)

* 7
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Following Ref. 2, nm  can be written as the ratio of

determi nants:

11 12 13 14 n
H m) Hm) Hm) H () n2_

21 22 23 24 n

Tim H-m) "(m) H ( M)  H( )  (111.2-8)

H(m) H(m) H~l H(m) 0
41 42 43 44

L !z a 0 0
n n

(M,)I ij -

in which

H m) Ar, for i=l or 3
n ]

n A(rm) for i=2 or 4

If one of the constituents of the binary mixture is atomic,

the term with pqst = 0200 is no longer an allowed menber of its

basis set, and (111.2-7) no longer applies. For the case in

which species 1 is atomic:

Jl
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H(m) H(m) H(M) X1
11 12 14

H(M) H(m) H(m)21 22 24

H H(m) H (m) H (M) 0
41 42 44

TIN1 = H(M) H(m) H(m) (1.-0
11 12 14

H(m) H (M) H (M)
21 22 24

H (M) H (M) Hi(M)
41 42 44

nwhere xi  n i s the mole fraction of species i

Letting

Ssq# s, t,)(a) s(p, q s. t )( a) + , p q, st5
p q' s' ti I S p' q' s' tii p q s t')ii

n i  1-/2 pq s t,)(a)
8kq' s t' i

C111.2-11)

and expanding (111.2-10)

8 [A+BX2+ 2+ 21/ [E+Fx 2+Gx2+Hx2] , (111.2-12)

[A+ 2xD3 2 3

.i. ' '..
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with

F 1 2000 ( F 1 (0200 (2)
A2 ) - - (00'ooo 2 J

(0 \200)21 200)21Loo21 L~

Fl 2 ()' F~ 1/2~11 a'2o 12) L_ (2 ) (WL)2 } (I1.2-13a)

1 o(2) 1 [-ooo 2)

B ot -oo)2  C" ( - +12 (2oo0)~

ooo(22l 1 .L - (2)1
'1 0 1 0 200 (2)2000

- "(20O )21 °' ( 2 ° j (2 000

B J o 020 () o(0 2) "(00012_

o200 ) I (2 0200) 2 200 )2L200 2 o'(200 )21 l I . 0200 21

O ,, 2 r(2)2000) )(2
200(2)i 02)2 - 0200 121

[ LO ~(2)l+[# 0 )(2)[~ (0200)(2)

r ao-0 (2 7 1 2000 (2

+ L (2 0) j/0- 2 ( 0200 )21

F 1 2000 (2) , oo (2) + 1 200 (2)
+ 7 (200)2 -",-2 2000 1 2- a B(2 0)

100)o(2) 1 2,9nnni20 im
+~ (3 ,--(oo21 ~ (2 c~56l'Ij8k T~ W 2 3A}

(I1I.2-13b)

-A
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with

(' -{ )21j ]202
2000 1 o' 0200 (2)1

J F_ ( ,20o)2 (2o0o)21

~~~ ( 0 ) 2 1 1 / 2
1J

20"_ o (2)1-FBm ( ; (III.2-13a)

( 2 1j L 'kBT (wL )2J

Z- 1 '2r 0- (2) + '2000)(2)

- i(2O00)(2)j a,,200l +0o(zooo2 1 200(2) 0200 21
L=a (2000)21 - '£02 0021 - 2 a(020011]

1000 (2)1c o (2
a"0200 (2)oo 0 oj "2200)12

0(-2000)21 0v2000 22 0

Fl 2000 1 2000 (2)
+ o00 (2) , " "( 0012 000)1] 1)'. = .3 ,( 0 2 0-

1, T

,2000 "2) +2000, 2]n ( ) (oL -

+,Ioo)2I )12o .

(111.2-13b)
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{ .o0oo (2) 2000 (2) 2000 (2)
Lu- ~s(2ooo)2 - v~ 0(2000)12 + o(2000)(

1 .2000 (2 ' 0"0 ( [2- 2000 (2)- -o"(2ooo)l tI_' ~ o~o~oo)~ j .- o(20)2

0(20 -(2) G (V 1 '1 --,, , 2 0 0 0 , 20 2 00 2 ° o

(2)i+ ~ ~ 200 (20 21 - fllo.o)

2000 (2) 22000 (2 +0o0 (2)

-y 0-- o" o)~ 2 + I-V/L a(000 )2 )1"(oi~2-

+)1-1 ,(~)(2) 21 20
20 _ i lf I_ 2 0 2 (5( 008)(2

S 20(200)2) +I2 (2)

'2000 20 0 2

12 12 2

- 5 o(200) o(2000) +-- ( ) (
12_J n1_

- (BL - -AB} ,A (III.2-13d)2000 (2) 1 0200(2) 200 _ (8)
- { (20 00) 1 + Y' (0200)2 r- _ 0 T(200 2 J

IB L

C B-Al (III.2-13d)

(2) 000 (2) .(8208)
E 

___00 . 2 (00 1 p21 2' 2

r+O(2000)(2f] ( L 2000 121i. 0200 (2)
2000 1 /,- 2 -1 0(200 21i' /p- a,(2000 )21 -

+ [ 000 (2) 12 .(2000)(2)jirn -T)1/2()j

(111. 2-13e)
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I , 0200(21120 (2L7_ 2000 (2)

62021o ' 000o,02 0° 2 00 )21 ) /- 0(2 0 ) 21L 20 1~~/ 2O(2) 1

I Ir 0(2000 (2)11200 a' ((o) i I I (000)(2)

1o 20 00)2 d I- 0 0 2 1I 2000'2
0 0  J [v+ o(2oo0~) L200 o(o2oo)1'}

(o o2) 2 0 0o0 2 (2),

2 { ( 2)oo , 10 (2) 1 200 0

o,( ooo) i o( ooo . /j7 ,, oo,7)

- ,,, ooo.,0 ( f2 o( o Io ) 0200)
21 002 I2000)2(1)2-2

- , 0 120oo, (2)1 f 116,000 21
S (_ oF (2000)1 f2 000)(2 rij 1 200 (2)
=1 21 1

IO (2 ) + 20001 , (2ooo)(2)1

4V37 0 2  V-11l -I o( 2000 2 1 c 2 000 21

20 1

x '-f (: °0 0 (2)  +  F o' 00( 2 2000 (2)1{,--

- {200( 2) l (2000)

(,J2 ' 1°° 21 2 oo 1 1- 3E20}2

(III.2-13f)

(2),

-- '-,- ~(2 00 (2000)(2). . .k.. ij:s,'. '- ::'"
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1 000 (2)] 1 200 (2) 1 oo0o (2)
G - { j o'(2000)12 j °'/-, a (02o) 21 1r, ( 20o)2

, o o 1 12 1

-200)(2)11 1 20 (2), o 020 (2)1

2 ' ( 200)21 / 000 + 1(2 0 2

20I , 0 (2) 1 8 000(2)1

x { (2000)1 ton 2. -0 20 0022

200 i2  20A 0011, 2)

1 a ..o oo ,( ) 1 ,, ) 1P2100o)i ' 1 : o o (2 )ij

200 P, 200 0 2) 1 , (2 )1

a 200 ) } - j 00) }-{ G/ zl 21- 0  2 )1[ L 1 in (

1 2000 1(2)1 2000 2 1 2000 (2)112- ,, 0 02 1/j f 1(2000)~1 1--1 a (02 0)21I

200 0200 (2)1 20 (2 2 000 (2)1x {) --- " (2)"02 0-

f/-1 oo 12 2oo 12,1 1 612000 (2) 1 2000 (2),
{ff 20008)} a 0200 0'ooV~ ( 2000)'t

1 22 (2)2

,,,( ooo)12 rP 2 o o 12o (oo ) '
- B 1

1 20°(2) , -+12000 2000 (2)x '1'12 000%O) 2~ }/ G(2000)21

2000 2( 2 f 02 ] 2000 (2) 1  
- 2)-C f ~rj- 0(2o )11}f 1- 2000 (2)1J~

(III.2-13g)

... ... ,.- : , :
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and

- 1 2r-00 (2)11- 2000 (2) i L 0200 (2)
H -{ & '2000) 2(2000)2 0(0200)2

)12 _2 2 - ( 2
i 1/2 1 1. 0200 (2)1 2000 (2)

+ n!' 8kT (L2 - Km 0 (2000) 2 J1 2 0(0200) 2

B 1:0 (2)

3X - 0 12 - G - F - EF E. (III.2-13h)

Now, for x,: small, equation (111.2-12) can be expanded

in powers of x2 , yielding

Fliii = T- A +BF 2
X2 +

(111.2-14)

Evaluation of AlE is immediate by inspection:

A - ~ 2000(2)

E f 0(200)1- (111.2-15)

and thus,

0( 2000) (2)
1BT+ x2

0(200) 1 2000 12
a"(2000) 1 )

+ x [ .... ] + .1111.2-16)
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Defining two new quantities,

02,000(2)

()L)2 (i21)1/2 00°21

8kBT 2000 ( 0 ) 0200)2

_&(2000)200 () (2
2 0)21 0200 21 02 0200)2, 2A000) 21 j *

(III.2-17)

and

(WL)2 ("W21)1/2 (0200 (2I2
S ( - ) 1/2 0200 ) -,

, (111.2-18)
BT

(111.2-16) can be written

r = atom a+b[ I+i m ]n fa 1 + +X 2  c I + im}

+ 2 [ .... ] + (111.2-19)

in which

atom lJ kB T I
n = k 1 (111.2-20)

a( ooo )

8 00 2

Cy 2 0 0 0
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1 2000 (2) 2000)(2) 1(0200)(2) .(0200)(2)
{0uT-- - - (2000) 1 L 0 00 12 2000'21 2000 21

2000 (2)1 1 0200 (2)F1o2000)(2)0#(2000)(2)
x a,(0200)21J +)1,12000121 '0200J21 "2000 12

2000 (2) 2000) (2 a 1 o(0200 (2)

o 2)2  (t2o021 l (o2o0)2 Il o 200) } , (I1I.2-21a)

200 (2)[ 1 2o 0 1 0 (2) - 2ooo,(2)
b = &(0200)21 C + a(201){ - (200 (o (2) 200 12 2000 (2) .,2000h (2)

- y (000)12 2000 1 2A

1-0200 ,(2) 2o , , 2000(2)2002

and
2000 (2)
(2° ("2 o (2) 20 00(2) 20C0(2)

S , 200 o'(ooo)21 '2o0)121 C"'(c20o21

4121 21 P1

x2o 00(2cl (11I.2-21c)

For concentrations of the diatonic species sufficiently

* small, only terms to first order in x2  need be kept, i.e., onlythe first two terms in (II.2-19). Under these conditions,
C- = --(-2.))

r- 21 2

1(02 O 2200) (II.221c

21)]I
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nm depends only on cross sections for atom-atom and atom-diatom

collisions. The primary contribution to nm  is, of course,

n atom= 10)(2) The effects of the field and

2000 1
the corrections due to the presence of the diatomic occur in

the term first order in x2 , with all of the field dependence

isolated in the im and im terns.

II
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111.3 Expressions for the Scalars Involved in a Computation

of the Shear Viscosity Tensor of an Atom-Diatom Mixture

To calculate the shear viscosity tensor for a small

concentration of diatomic species in a predominantly atomic

gas, the first two terms of equation (111.2-19) are sufficient.

These terms involve ten scalar quantities, one for atom-atom

collisions and nine for atom-diatom collisions. Of the nine

atom-diatom scalars, five are of the a' type, while four are

of the a" variety. The scalar quantities needed for such a
2000 (2) 1(2000 (2) (2000 (2)

calculation are 0(2000) , ( 2000)21 00)12

2000 (2) 1'0200 (2) 0200 (2) 2000 (2)
0'(0200) G (2000)21 0'(0200) o"(ooo21 2121 ' 21

2000 (2) ,,(0200
12"012 (  2 12 e 21 where once again,~l 12'0 c 2 1 '

I is the atomic species and 2 the diatomic.

Equations (1.5-1l) and (11.5-12) give expressions for

the above quantities in terms of the collision integrals,

( qI n' t I ' and a"(, q n t )k. These expressions

involve the quantities, I knIzn" ps.(C1'a , resulting

from the Talmi transformation, six of which are needed for

the calculation discussed here:

(k )  I " )1+ /

'n3'n';2020'3 6k 6k 6k2 n,lO6 Y,lO

[kO+ kl +k2+ 6k3U k4 6 20 Llns,20+ " kOIn•006 in,•O0}

(III.3-1a)

L :



1 52

1(k) ni 2' T 1
tnt nS;2O20(2-In (M I+M2f 3 ks + l 3 k 

M2 n,0 iln',iO +O £k i~k2 U k3+5k.n,20'Vn 1,20

+ ~(1II.3-1d)

(k) m 1 2A-5.3le

kO" kl 2 U k On,0n',2,2

rand(II3-c

kUm n00zn,0

-v.
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Using the above and the relation

0 eIL I q no t)6v =- ,x q no t 6v 6 to q no V

1 on o'k ( o n ok kq o n' ok'

which requires k be zero if q=q'=O, equations (11.5-11) and

(11.5-12) can be evaluated for the scalars of interest:

2000 (2) 1 0o 11

0(2000)20000(2000)1 a , 200 0o , (III.3-2a)

,2000 (2) m 2000 21 1000 21
a 200) (2000)o + 2(T-i')(10 G )OO 1,IlI.3-2b)
0002 (2) 2 O 12 m

'12 (ml+mn2)2 {'(4ooo) oo
#(2000 (2) m0 2 1000o,2

a2000) ( (m0Om2) + 2 o'T0-0)2  (111.3-2d)
(2000()2 m 5/1- ,2000 21

60200 (2) m_ 020021
a(2000)21 (m1+m2) 5 o'(2000) 2  (III.3-2e)

O1(020 0 ,(2 )  = 0 2 00 21
a'o(o0J2 0200 0 2 (1].3-2f)

28(2)= (M2 '(28002o 2o)- '(oo0)0 21, (11.3-2g)a"(20 212 (MI+m2)2 fo 2 0001000 12
o,,,2000) (2) = pm "Y , 2 ,,zoo,12

2000 12 2T2 200 )0  1000 0 1 (111.3-2h)

2000 (2) = m1  5/14 2000 21
0"(°200)21 - --2 7 o"(02oo)2 (111.3-21)
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and

(0200 (2) M 5 6(0200)21(" 2oo ,2 = m0)-- 5 • 200)2 (111.3-2i)

In (III.3-2a), (1I1.3-2b), (111.3-2c), (I1I.3-2g), and (HII.3-2h),

use has been made of the fact that

C .0o,(oooO = 0 . (II.3-3)

Equations (1.4-15) and (1.6-9) can now be used to obtain

expressions for tfhe nine collision integrals appe ,-ing in

(111.3-2) above.

In general, i.e., if both collision partners are diatomic,

equation (1.4-15) yields

' O4 2002" ' c( A'){ . - (81T2 ) 2  [O() XP ab)
0 v 15 ~k T 1.~~ba

x A' 2 y2I !h M h- h m.3- 0 ly,-- - S ''

" M3 -kBT aK] (j 'xISaSb)]

(1II.3-4)

4[
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If one of the collision partners is spherical, the reduced

scattering matrix, S , is independent of the angles associated

with the orientation of that collision partner, and the j

quantum number associated with rotational states of that

collision partner vanishes. Now, utilizing the fact that

a b ~b~ = exp [2iH(j. j ]'

S(Ja'Jb'!SaSb) 32'jb' aSb)]
(111.3-5)

where H(Ja'Jb'AISaSb) is the generalized phase shift

introduced by C. F. Curtiss, 3 the o'(2)6); collision

integrdls appearinq in (111.3-2) can be written,

2000 4 1)2  
-o'(2oOG)o - k:T (AAfx~' -(~ 2) [a(.kA')(p0 l 7 1- .IkBT A At j, a)

A2" d 3 dS exp[-2iH21,'j

S0 0'a

I- 1(a)- A-
X _ (I (a h-I-a a ) O 0

1k (a)](I.-aB 2 k T K exp [2iH21(Ja'AJSa)]]j , (III.3-6a)

JB
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(2000 12 z4 h2iy c(X'

(~,~ ~ Jdyy 3 e j db exp(2iMi2(jbX 61Sb)]

() x x U ~
fi '3 -M~b) .th-1M~ 01 Ily I-~

and

2000 11 4 h~r W 6 a X)L V 2~ 2
a' (2000)o T5 a(\' _B AAxI lo o oJ

x dy5 e 2 e2iLH(X)Hi(x]1 (111.3-6c)

x ys -
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The collision integrals are treated in a

similar manner to yield

1000 21 2 fi2 r1
G'(1000) - 3 2 kT 8 6, 82)-'  [(')(P' )

B ,l j a

x ' 4 dyy 2 e-y2 j dSa exp[-2iH*I(jaX'ISa)]

x l(l IM~a) X V} I, 3 ,a) -h .,(a 0
a 3~

x 2 kBT K(a))/21 exp[2iH,1 (j'j a) (III.3-7a)

and

1000 12 2 h2 11  X I(x ') 6 n- 8 2 -  (XX)(pj,)

o0 0) d,2 e-- dSb exp[-2iH2(Jb"ISb))

r*

F-~~~ VIIb (b) I

[(2 IkB Kb) 1/21 exp[2iHl(,Ib)1 (III.3-7b)(212 kBT K l 12 'I

The remaining collision integrals appearing in (111.3-2) are

treated individually and yield somewhat more complicated

expressions than those of (111.3-6) and (111.3-7).
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1(2000 21
Using equations (1.4-15) and (1.6-9), ( 02oo) and

*, .2000 12
0 (0200)2 can be written

2000 21 2 F3 h2"n W
" ( 2°00) 2  75 12 kBT ( 2)- a

a

j'x
x ( (2) :j] (2) ()) a 2(X )

2 3 2 r

x M C, i) y ed a e [exp[-2iH21(Ja Sa)D20(Sa)
a{=-2

h-L,)+ -l (a7
x 212 T K_ exp[ 2 1i ISa)] (III.3-8a)

and

a 2000)12 - 22 3 (81)-  (
'02 00)2 7 -5 wiikj fa8itFj

(J]2) j~2) 1/2 (2)
x( 2 ] R0  (ej)a 2(X)

2 cr .. . . t

x (i)- J dy'y3 e-Y2 f dSb exp[-2iH12(JbXlSb)j
2

(b") 2i , "sS(.- J .  fi-l b)a _ _1L (b)/ Lo b)

3", 3 J

2exp[21Hl2(j;XlSb)] ,(11.3-8b)

....... .2 -- BT
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0200 21 0200)21
while G'(2000)2  and al(a20o 0 become

0200 ) 2 2/I h2w x (8i2) I f~.)a.2())

2 2 x X,21 -Y 2 expC-2iH*,(j;)elS8

ct=-2 0=-2

x 1 (2 -)D 2 (S )KI-~~) ~
a(I a i1(a) - 4 a)8 .j

0a -
'3m~

and

0'(200 1)6- ITFy C~xL (BIT2'

(2 ~ ) (2) (2)
x D21 (S )(p-1) l a[j I/

-~ a a. ~(a' -1L a
jL 3 - 3

(?-aI (S (a) 2 j;

al a a L0  a

x ex[2i2, (;Xla)](II1.3-8d)

If



160

From equations (1II.3-6a) and (III.3-6b) and equations

(III.3-7a) and (III.3-7b) it is apparent that
a

2000 21 , 2000 12

0'(ooo)0  U o2oo) 0  (111.3-9)

and

1000 21 o00.12
G'(ooo 0  G 1'(i o) 0  (111.3-10)

Thus, seven collision integrals need he evaluated to obtain the

five spherical components of the viscosity tensor For an

atom-diatom mixture subject to an applied field. In the next
section, these collision integrals, o'(2000). G 2000)

1000 21 o'(2000 21 2000 12 0200 21
'(I0oo 0  a0200)2 y" , (0 0 ('(20o00) 2  ,and
0,0200 21
(0200)10 , are written in forms appropriate for computational

purposes.
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111.4 Classical Limit Expressions for the Collision Integrals

Expressions for the classical limits ot the seven collision

integrals listed at the end of section 111.3 are next considered.

The procedure for obtaining such classical limits is discussed

in detail in the work of K. Squire 5 and R. Wood, 4 and

consequently, is only sketched here.

An expression of the form

JJ dSSb e-2iH*(Jajb'IiSaSb) A e2iH(JajbXISaSb)

where A is any operator in the space of the six Euler angles

indicated by Sa  and Sb , may be rewritten as

f dSadSb e-2iH*(jajbIlSaSb)e 2i[H*(jajbAISaSb)-H*(Jajb'ISaSb)]

X A e2iH(j aj b)ISaSb) (111.4-1)

It is shown in Ref. 5 that there exists a unitary operator,

P(A;SaSb) , such that

2iH(ja AISaSb )  2i,,x
e P(x;SaS b) e , (111.4-2)

where n% is the spherical phase shift. This makes it possible

to write (111.4-1) as

A.4 .-.
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f dSadSb P'1(X;Sbbb)e 2i[H*(jaJbbS'Sab)-H*IJaJb 'JSaSb)

i0i x~S S)X A P(A;S S) = d b e ab Ib

(111.4-3)

in which A P-I(A;S S ) A P(;S S ) A'- and the

a b a b' ~ ad
generalized angle of deflection, x,(jab t(a~ b) , is defined

such that

- x (aJb ISaSb) P-L(A;SaSb)[H*(jjb'SaSb)-H*(jJb'+ ISaSb)]

x P(.;SaSb) (111.4-4)

* and consequently,

p-1(k;Sab~ 2 i [H*(Jajb AISaSb-H*( j~k ISS {k;ab

a eiX b(JaJb\ISaSb)

(I11.4-5)

Next, the operator, A , is replaced by the classical limit,

A(Sab , which is a function, 5 and x is replaced by its

limit, which is a function independent of & . Finally, infinite

sums over discrete indices are replaced by corresponding integrals

over continuous variables. Details of the above procedure are

discussed in Ref. 5.

- - ~ -, 4~*Ii
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Carrying out the above, the classical limits of
,o000 11 2000 21 '1000 21(20oo)0  o'(2oo °) , and '(IOoooJ are given by the

following expressions:

Classical(2000 11 Limit 8-n' 2 2(
2000)0 -f bdb f dyye - Y sin 2X1 , (III.4-6a)

Classical') ooo 21 Limit 2 de rot bdb dyy2
a (2000) 0  de eT frote b f ya

2y1: k K in2 1(Sa) K 2iknT cos X21(Sa l
- 1.k 21Sa a 11k PB J L7

(III.4-6b)
Classical(If1.-b

1000 21 Limit 41T " -rot
0 (1°)0 31 1 J dye-Y"j bdb J, 5-2y4 dt rot

S ( 8  )i }' dS '2 l K(a) /
a 21T7kBT _

TT - --] - ,  COS X21 (Sa )  , (II1.4-6c)

in which b i the classical impact parameter, 6 rot is the
6

dimensionless r-t.jtional energy of the diatomic molecule,

X, is the spherical angle of deflection for coltiding atoms,

Y21(Sa) is the generalized angle of deflection for an atom-

diatom collision, and M a ) and K(a ) are functions defined

in Ref. 5.

AM
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,2000,21 2J. 12

The classical limits of 0'0200) 2 200 2
0200 21 , 0200 21

S(2000)2 , and a (0200)0 are somewhat more difficult to obtain.

They are found by replacing I(a) *  by M(a) , La) by (a)

K(a) by K(a). I (2,-a) by l(a)( 2 ,-a), and D2 (S ) bya z a
D2 (Sa) , and again introducing the generalized anqle of
U0~ a

deflection. The quantities M3a) La and K( are those

of References 4 and 5, while 1(a)(2,-a) and b2 (Sa) are
the classical limits of P -1 ta2,-cL)P and P'ID,' )P

a , it a

respectively. The classical limits of the Ro2) Wang Chang-

Uhlenbeck polynomials are independent of the argunents. They
212k T 2 , 21,kBT 2) (2)are [4 B B-- - -- ] while ([J]1( ) [,J] ( ) a

* is - ja(Ja+l) [4j . Following Reference 5 and
2000 21

utilizing the above, the classical limits of o'( 0200)2

2000 12 (0200 21 0200,2
0"(0200)2 , (2000)2 , and a'(0200)1 may be obtained.

Once the classical limits of the seven collision integrals

discussed in this section have been obtained, it becomes

possible to compute them numerically. The methods used by

R. Wood for a Lennard-Jones 6-12 potential with P2 anisotropic

attractive and repulsive terms %pay be extended in a straightforward

manner to the collision integrals involved in a calculation of

the shear viscosity tensor of an atom-diatom system subjected

to an applied magnetic field. Though straightforward, the

computations indicated here are expected to be quite lengthy.

...................................
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It is possible, however, to discuss the natt:re of the effect

of an applied fielj on the viscosity tensor obtained in

section 111.2 withodt carrying out such a calculation.

This is discussed in the following section.
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111.5 Relationship of nm to Previously Calculated and

Experimentally Measured Results

In this section, attention is focussed on the qualitative

behavior of nm as given by equation (111.2-19). Both low and

high magnetic field limits are examined, as well as the spherical

limit and the experimentally measureable quantities. Qualitatively,

nm  is shown to be consistent with recent computations of n

in the absence of a field, and with the measurements of Beenakker
7

and others of viscosities of gases with diamagnetic diatomic

components in the presence of an applied magnetic field.

Recalling equations (111.2-19) and (111.2-20),

natom n+ x2 a+b+im4J}]l (111.5-1)

m n ctl+im'}

with

aomT8 2 1 ((I2.5-2)
atom -- 2(088)l

and in which only terms to first order in the mole fraction of

the diatomic species have been kept.

In the limit that the magnetic field, H, , goes to zero,

ip and 0 go to zero, and

MO
nm  - no (111.5-3)

I-' . . . .. .- . . r  " - ' 'e -.L, L ll - - ' ,k .

....... it . ... ... T11 til. r
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with

atomab
no an {l+X 2 -+- (111.5-4)

If expanded in orders of the anisotropy of the atom-diatom

potential, the zeroth and first order terms of no are,

respectively,

atomjlX-1 ,2000.(2), 1 2000 (2)

no(O) tol+x2 1V2- (2000)) -- o(2000)i

l _ ,, 2000 (2) _ 1 1(2000 (2)
- ,,'- - 00(2000)1? - v 00(200021 }

, 0o 0,(2) ,,.000 (2) 1 ,,2000 (2) 2000 (2)1

0O(000 21)OO200U) 000/1 o'2000 21)]
S0)21 )12 2000)1200

I- 1 20 O (2) O 2000 ( - (111.5-5)
X 0(20-6 ))1 0( )21

and

no(1) 0 . (111.5-6)

In the above, the collision integrals subscripted with zeros are

the contribution to the collision irtegral from the spherical

portion of the interaction potential, i.e., the zeroth order

in the anisotropy contribution. Through first order in the

I
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anisotropy, no is identical to n computed by R. Wood.

(See Appendix III.A.) The second and higher order contributions

are expected to differ slightly due to the somewhat different

truncation procedure. (See section 111.2.)

In the spherical limit, i.e., the limit in which only

terms to zeroth order in the anisotropy of the potential are

kept, @sptierical ; spherical ' a - 0 , and nm(O becomes

independent of both the field and the index m . This is as

expected, since the field effects are due to the non-sphericity

of the interaction potential.

In the large field limit, nm again becomes independent

of the field. For m = 0 , of course, it is identical to the

low field limit. However, for m t 0

HM'o atom + b(Tim  - n 11+ +^2t-v(I I. -

Since all field dependence is isolated in p and ,

(111.5-7) can be written (p and 4 are both proportional to

n , which is proportional to HM/P)

+ atorm r x'-0 0:u 1 b
nmtO(HM-) n ( +X 2  2000 2) 1(2000 (2) 1(0200 (2)'

ci(2oo a(2000)21 0021

(III.5-8)

I

i.
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which is clearly independent of field. nm(Hi-) is identical

to no(O) if the zero subscripts are removed from the atom-diatom

collision integrals occurring in n0(O) . The fact that

nm (HM- ) is independent of the field is explained physically

by the fact that the precession frequency becomes much greater

than the collision frequency, resulting in a statistical

averaging 8 of the diatomic species for large field. The

net result is a saturation of the Senftleben-Beenaker effect

and is observed experimentally. 7,8

Turning to experimental results, the quantities that have
7,8

been measured are the changes in 2(n2-11- 2) -n-1)

* and 1(n2+T.2+nl+nI) induced by an applied magnetic field.

The first two quantities are

,atom x +b)-b, (111.5-9a)3 , n n _3 =T 1 o + 4 ¢ ' J

and

2 atom (a+b) -ht, (1I1.5-9b)
nC I l+ X 2

The interesting point to note here is that since both * and *

are directly proportional to HM/p , the above quantities are

odd with respect to the field. This is observed experimentally.

I
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The third quantity, measured by Beenakker and co-workers,8 '9

is (to first order in x2)

-An _ 4nn-(n2+n-2+n1+n~l_j aX9 j[5+8 2][(a+b)02-bO¢]}
n 4no 2 c[1+502+404]

(111.5-10)

This expression is even in the field, as is observed

experimentally. Furthermore, in the low field limit, An is
n

proportional to the square of HM/p , while in the high field

limit, it becomes constant:

2 x2 - I2 2 ) 1

(III.5-11)

(. 4n.) grows monotonically from zero to the above saturation

limit. All of these characteristics are consistent with

experimental observations.

It is interesting to note that since both the high and low

field limits are independent of m , except for m =0,

HM + Tim(HM - O) - nmO(HM +C)

n nm HM 0+ ) (111.5-12)

Thus, the saturation value for the relative change in the

m = +2, +1 spherical components of the viscosity tensor is

identical to the value measured for the mixture in the

experimental apparatus of Beenakker and co-workers.

,..- .,.at ". - , . . .. *
. -

1.
: t ' ' - . ,'

:, - -
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The important result of this section is that using the

minimum basis capable of exhibiting field effects, it has been

possible to obtain expressions for the spherical components of

the viscosity tensor which behave qualitatively in a manner

that is consistent with experimentally observed behavior.

Since, in principle, computations of the field effects are

no more difficult than the recent non-field calculations

of R. Wood, it is now possible to obtain theoretical values

for the field effects on the viscosity of gaseous mixtures

that contain small concentrations of diatomic molecules in

a predominantly aton-ic fias. There is considerable experimental

information with which these theoretical reults c~in be

compared.

I
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111.6 Summary

To summarize, in section 111.2 an expression (equation

(111.2-19)) is obtained for the spherical components of the

shear viscosity tensor of an atom-diatom mixture in the

presence of an applied magnetic field. This expression is

shown in section 111.5 to be qualitatively consistent with

experimental observations of these field effects. A calculation

using equation (111.2-19) requires the consideration of ten

scalars,

0,2000,(2) ,2000) (2) , G 2000o)(2) ,,(2000o (2) G,(020oo (2)

211

i(200)(2)

o 2000,21 ,

which, under closer examination in section 111.3, prove to

require the evaluation of seven collision integrals,

2000 11 ,(2000 21 01000 21 2000 21
,(2000) 20) ,1000)o 0'(200 2

0200 21 2000 12
a (2000)2 , and a"(0200)2

.. 0
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A computation similar to that recently completed by
4

R. Wood requires expressions for the classical limits of

the above collision integrals. The procedure for obtaining

such classical limit expressions for the collision integraIs

examined in section 111.3 is outlined in section III.4. It
5

relies heavily upon the work of K. Squire, and the reader

is referred to that work for a more detailed treatment.

The fact that equation (111.2-19) 1s consistent with

the available experimental results is most satisfying. It

can also be shown that the classical limit expression for
2000 11 atom

0'(2000)0  leads to an expression for q that is

consistent with those of other treatments. The RHS of (III.4-6a)
8. [ - _ (2,2) (2,2)

is equivalent to 2kTwhere is an omega

integral defined in Reference 2 and equivalent to the i )(s)

10of Chapman and lijn. Using this result and the factatof ' ' k ' IkT 1

that' ,'oT2-T the classical limit

atom
expression for T. becomes

atum 5 k5 T

"C~~ 1.(22

which is precisely the expression given in Ref. 2.

I

p..
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Thus, the dominant contribution to the shear viscosity

tensor is consistent with other theoretical developments,

while the qualitative behavior is consistent with experimental

observations. It remains to be seen if a numerical calculation

will lead to results that are numerically close to those

obtained by experiment.

: .. . . . . ."H= r ... .r,.. .. . . .... . . . . . . . . . . ..
'

2
; '



175

Appendix III.A Demonstration of the Equivalence of no(O)
and nWOOD(o)

WOOD

Since there are no contributions to no and n that
WOOD

are first order in the anisotropy, no and 11 are identical

through first order in the anisotropy if no(O) and nWOOD(o)

are the sdme. Equation (111.5-5) can be written

atom) [1 +x2t 1(O)] , (III.A-1)no(O) = CL

atm 5kBT WOOD

where nCL 5 -B - is identical to no , and

ij(O =o o)88 20 )o(2)4 }~B L)

+ ,,280 0o

f2 ,2o00 ( f (III.A-2)

Now,

Classical02000 (2) 1 2000 II Limit 4,F (2,?)
a(20O0)1 = 0 o(20O) 6(2000)I (2)

(11.A-3a)

0( 0 0 . .00) . 12,2
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2 ( (ml+n12)2 {a6('000)2_ 000)12

Classical
Limit m+m2 Pj T12 1 ( .)(0)- _L (l .)(0)},

Tm1+m22 'I~k8T '6 12 ' 3 .12

(III.A-3b)

Classical
2000)( = Limit 12000 (0 € ao,12 0 12

06,(2000)(2) = M2 l2c])12 2ml) ,*('0001 12
2000 12 (ml+m2)' {oO( 2000 +2( ) 0 1000 0

Classical 2Limit _M2 FT 12 _8(2,2)

(MI+M2) 2- 2 {k T  l 2 (0)

+ m2  22 (o)} , (III.A-3c)

and

200 (2) m_ 2000 21 m€ 1000 21
o0(200)21 = (m+2)2 {(ooo)0 +2() (ooo)o

Classical 2
Limit 1 8 (2,2)

(mI+m2)' 12k B 12

I
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12 Lo:z i 26~i 2 C :~A 21~j

1- 2000 (2 *2000u(2) 1
C -- (2000 ) b 0602000)

2 M , 2f (2,2)*0 1(1,1)*0

j I 12 32 12 ()

where M4 (ni2-'-2) , and

2000 () 2 200 (2 1 2000 (2)
200 (2 - o 00 20

1r (2,2) + -1 ,(22 1)1

5 12 3 -12

(III.A-4b)

Equations (I AI.A-4a) and (III.A-4b) can be added to yield

f M2[H1(0)+2H2(O)] - [H3(0)Hd(O)-MIM2H2 (0)
2] [m1H1(O)1 1

I(1II.A-5)



178

weethe H (0 ar th spherical limits of the Hi quantities

defined 4by R. Wood.

Finally,

-WOOD7~() =r~ (0) ,(III.A-6)

and consequently,

(0) = WOOD
n() n (0) .(III.A-7)
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CONCLUSION

In Part I, the collision integrals, developed by Hunter and

Snider 1 and essential to Hunter's treatment of a single component

diatomic gas in an applied field, 2 are expressed in terms of the

reduced scattering matrix of %urtiss 3 and co-workers. The

introduction of several operators leads to considerable

simplification of the expressions for the collision integrals.

The intent of this work is to move closer to calculations of the

transport properties oiF dilute diatomnic gases in applied fields.

Recognizing the difficulties inherent in carrying out a

calculation which requires treatment of diatom-diatom interactions

leads to the aim of first discussing a physical situation which

requires only the consideration of atom-atom and atom-diatom

interactions. This leads to the development in Part II of

expressions for the transport properties of binary gaseous

mixtures in applied fields.

Part II is an extension of Hunter's work on single component

2gases to binary mixtures. As in Hunter's work, scalar equations

for the shear viscosity and thermal conductivity tensors are

obtained. In addition, scalar equations are obtained for the

bulk viscosity, multi-component and thermal diffusion, and flow

* birefringence tensors of binary mixtures in applied fields. The

motive for discussing mixtures is the desire to treat systems

composed of a diatomic species in low concentration in a
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predominantly atomic gas. Such systems require the treatment of

atom-diatom and atom-atom interactions only in a calculation of

the transport properties. The shear viscosity of such a system

in an applied field is examined in detail in Part III.

An expression for the shear viscosity of an atom-diatom

mvixture is obtained in Part 111. As mentioned in the sunmmary,

the expression obtained is consistent with both experimental

results 4 and the nuriierical treatment of such systems in the

absence of a field recently completed by R. Wood. 5  Treatments

of single component systems and at least one treatment of binary

mixtures 6 have also yielded results in qualitative agreement

with experiment. This, however, is the first treatment of

mixtures using techniques 2which require no truncations priorF

to the tensor analyses.

A sketch is also given in Part III of a procedure which can

lead to the eventual calculation of the collision integrals

occurring in the expression for the shear viscosity. A large

amount of work, howc-ver, must yet be done in applying the

numerical methods 5 of R. Wood to a calculation of the shear

viscosity of an atom-diatom mixture in an applied magnetic field.

This leads to a consideration of possible future work related

to the present development.

Clearly, the next step in this development is the actual

calculation of the transport properties of dilute gases in applied

* fields. The calculation that seems most immediately feasible is
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that of the shear viscosity of atom-diatom mi.xures in an applied

magnetic field. Other transport properties of atom-diatom

mixtures are possible once the scalar equations of Pdrt II have

been solved in analogy with the shear viscosity de.elopment of

Part III.

Calculation of the transport properties of sijle component

diatomic gases in applied fields requires con. ideranly more

complex computer, programs than those needed for tile atom-diatom

mixtures. In principle, however, these are also possible.

Part I is a step in that direction.

The Senftleberi-Beenakker effect is felt to be a potentially

sensitive probe 7 of internoxlecular potentials. Its use as such,

however, is limited at present by the relatively small amount

of theoretical work4 in this area. The present need is for

calculations to go along with the considerable experimental

information already available. This thesis is an attempt to

bridge some of the gap between experimental evidence and

theoretical understanding of the Senftleben-Beenakker effect.

e

t ' I
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